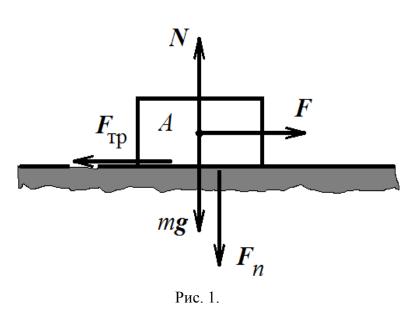
Лабораторная работа № 1.6.


Определение коэффициента трения скольжения

Цель работы: определение коэффициента трения скольжения «методом рейсшины». **Приборы и принадлежности**: доска, рейсшина, тело, имеющее две грани, покрытые различными материалами, линейка.

Теоретическое введение. Силы трения.

Явление трения имеет место на границе между разными соприкасающимися телами. Силы трения возникают только при попытке сместить одно тело относительно другого (статическое трение — трение покоя) или при перемещении тел относительно друг друга (динамическое трение скольжения, трение качения и вязкое трение).

Силы трения имеют электромагнитную природу и определяются характером взаимодействия атомов и молекул в соприкасающихся слоях.

Пусть тело A (например, брусок) лежит на неподвижной опоре. Подействуем на тело A внешней силой \boldsymbol{F} , непрерывно увеличивая ее. Вначале брусок будет оставаться неподвиж-Это означает, внешняя сила F уравновешивается некоторой силой $F_{\rm rn}$, направленной по касательной к трущимся поверхностям противоположно силе F.

Трение, которое мо-

жет существовать между телами, не движущимися друг относительно друга, называется *тением покоя*.

Пока внешняя сила меньше некоторого максимального значения F_{max} , относительное скольжение тел не возникает, т.к. сила трения покоя «автоматически» принимает значение, компенсирующее действие внешней силы.

Когда модуль внешней силы (а, следовательно, и модуль силы трения покоя) превысят значение F_{max} , тело начнет скользить по опоре. При этом сила трения продолжает действовать на тело A — она называется в данном случае силой трения скольжения.

Сила трения между телами, движущимися друг относительно друга, называется силой *тения скольжения*.

Модуль силы трения скольжения зависит от скорости относительного движения и приблизительно равен F_{max} .

Основные эмпирические законы сухого трения получили французские физики Γ . Амонтон и Ш. Кулон. Было установлено, что максимальная сила трения покоя не зависит от площади соприкосновения тел и пропорциональна модулю **силы нормального давления** F_n , прижимающей трущиеся поверхности друг к другу

$$F_{max} = \mu_0 F_n. \tag{1}$$

Здесь μ_0 - коэффициент трения покоя, зависящий от свойств соприкасающихся поверхностей.

Характерные значения коэффициентов трения покоя μ_0 приведены в таблице 1.

Таблица 1.

						1
1-й мате-	сталь	сталь	сталь	металл	резина	дерево
риал						
2-й мате-	лед	сталь	пластмасса	дерево	асфальт	дерево
риал						
μ_0	0,015	0,15	0,3	0,5	0,55	0,65

Аналогичная зависимость имеет место и для силы трения скольжения

$$F_{\rm Tp} = \mu F_n, \tag{2}$$

здесь µ - коэффициент трения скольжения.

По третьему закону Ньютона модуль прижимающей силы (рис. 1) равен модулю силы нормальной реакции опоры *N*. Поэтому чаще записывают

$$F_{\rm TP} = \mu \ N. \tag{3}$$

Описание установки и теория метода.

Основанием установки служит горизонтальная доска, по нижнему краю которой, как по направляющей, может перемещаться ползунок с закрепленной под определенным углом линейкой. Линейка B (рейсшина), поставленная на ребро, может перемещаться поступательно по горизонтальной поверхности доски (рис. 2).

Приложим к плоскости линейки тело A так, чтобы соприкасались поверхности линейки и тела. Тело представляет собой параллелепипед, лежащий основанием на горизонтальной доске, а боковой гранью упирающийся в линейку.

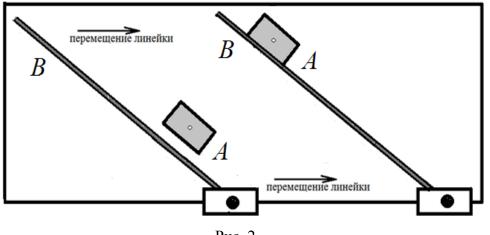
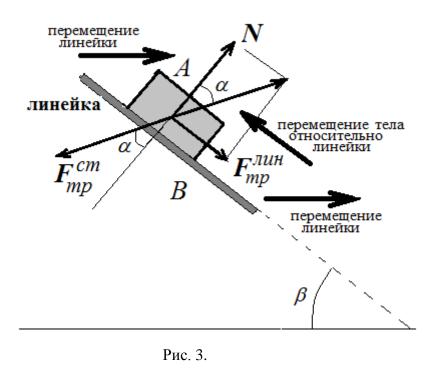


Рис. 2.

Если линейку В равномерно перемещать вправо, она толкает тело А, которое будет равномерно перемещаться вдоль линей-


ки вверх (рис. 2).

В работе определяется коэффициент трения скольжения между линейкой B и телом A.

На рис. 3 изображены силы, действующие на тело, прижатое к линейке. Тело трется о линейку и о горизонтальную поверхность стола, на которой оно лежит. Поэтому рассматриваются две силы трения:

 ${\it F}_{\rm тр}^{\rm лин}$ —сила трения скольжения между телом ${\it A}$ и линейкой ${\it B}$. Эта сила направлена противоположно скорости тела относительно линейки.

 $F_{\rm тp}^{\rm ct}$ — сила трения скольжения между телом и горизонтальной поверхностью стола, по которой движется тело вместе с линейкой. Эта сила направлена в сторону, противоположную скорости тела относительно стола, т.е. под углом 90— α к линейке.

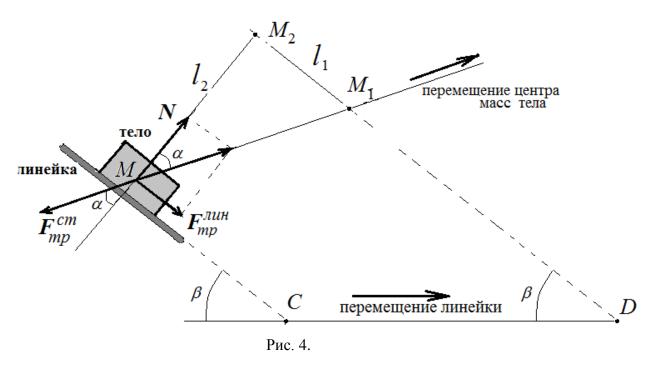
Обозначим через N силу нормальной реакции со стороны линейки,

Если тело A движется равномерно, то сумма всех сил, действующих на тело, равна нулю.

Поскольку $F_{mp}^{_{\it nuh}} = \mu N$, то

$$\mu = \frac{F_{mp}^{nuh}}{N}$$

то из рис. 5 следует


$$\mu = \frac{F_{mp}^{nuh}}{N} = tg\alpha.$$

Определим *tg* α, для этого переместим

линейку слева направо на расстояние *CD* (рис. 4).

При этом центр масс тела переместится из точки M в точку M_1 . Если MM_2 определяет направление нормали к линейке, то

$$tg\alpha = \frac{M_1 M_2}{M M_2} = \frac{l_1}{l_2}$$

Окончательно имеем рабочую формулу для определения коэффициента трения скольжения

$$\mu = tg\alpha = \frac{l_1}{l_2}. (4)$$

Угол между ребром линейки и направляющей обозначен через β . В разных опытах его можно изменять.

В центре перемещаемого тела имеется отверстие. Вставив карандаш в это отверстие, можно отметить положение тела в начале движения (точка M) и в конце движения (точка M_1) (рис. 4).

Одна боковая грань тела латунная, а к другой приклеен слой резины.

Линейка изготовлена из дюраля. Таким образом, когда линейка толкает тело, и оно начинает скользить вдоль линейки, возникает сила трения либо между дюралем и латунью, либо между дюралем и резиной — в зависимости от того, какая грань тела скользит по линейке.

Порядок выполнения работы

- 1. На плоскость доски наложить и закрепить лист бумаги. На бумагу поместить рейсшину. Убедиться в том, что ползунок может свободно перемещаться влево и вправо по направляющей, совпадающей с ребром доски.
- 2. Установить рейсшину так, чтобы ребро линейки составляло угол $\beta = 45^{\circ}$ с направляющей (ребром доски).
- 3. На бумагу вплотную к поверхности линейки приложить тело (например, соприкасающиеся поверхности д**юраль**— д**юраль**) и аккуратно через отверстие в теле отметить начальное положение тела M.
- 4. Прижимая ползунок к ребру доски, плавно и равномерно переместить ползунок вправо до упора.
 - 5. Осторожно, не сдвигая тело, отметить новое положение тела M_1 .

- 6. Убрать тело и через полученную точку M_1 провести прямую, параллельную линейке. Из начальной точки M опустить перпендикуляр MM_2 на полученную прямую. Соединить точки M и M_I прямой MM_I .
- 7. Измерить расстояние $M_2M_1=l_1$ и $MM_2=l_2$, при помощи измерительной линейки. Результаты записать в таблицу 1. Определить коэффициент трения скольжения для данной пары материалов по формуле (4).
- 8. Изменив первоначальное положение тела относительно доски, проделать опыт не менее пяти раз. Найти среднее значение коэффициента трения скольжения для данной пары материалов дюраль— дюраль.
 - 9. Результаты измерений записать в таблицу 1.

Таблица 1.

Пара мате-	№	ß	1.	1.	- 11	ZU\>
риалов	опыта	P	ι_1	ι_2	μ	<µ>
	1					
	2					
дюраль-	3	45°				
дюраль	4					
	5					
	1					
	2					
резинка-	3					
дюраль	4					
	5					

11. Перевернуть тело другой стороной так, чтобы соприкасающимися поверхностями стали **резинка и дюраль**. Для этой пары материалов провести исследования, аналогичные проведенным для пары материалов дюраль— дюраль. Данные занести в таблицу 2, аналогичную таблице 1.

КОНТРОЛЬНЫЕ ВОПРОСЫ.

- 1. Какие типы трения Вы знаете?
- 4. Какое фундаментальное взаимодействие определяет возникновение сил трения?
- 3. Как определяется коэффициент трения в данной работе?
- 7. Какова роль сил трения в природе?
- 8. Чем трение скольжения отличается от трения качения?