ВАРИАНТ 7

КОНТРОЛЬНАЯ РАБОТА № 1

- 1. Диск вращается вокруг неподвижной оси так, что зависимость угла поворота радиуса диска от времени задается уравнением $\varphi = At^2$ (A = 0,1 рад/ c^2). Определить полное ускорение a точки на ободе диска к концу второй секунды после начала движения, если линейная скорость этой точки в этот момент $\upsilon = 0.4$ м/с.
- 2. К стальной проволоке радиусом r = 1 мм подвешен груз массой m = 100 кг. На какой наибольший угол α можно отклонить проволоку с грузом, чтобы она не разорвалась при прохождении этим грузом положения равновесия?
- 3. Полная кинетическая энергия T диска, катящегося по горизонтальной поверхности, равна 24 Дж. Определить кинетическую энергию T_1 поступательного и T_2 вращательного движения диска.
- 4. Фотонная ракета движется относительно Земли со скоростью v = 0.6 c. Во сколько раз замедлится ход времени в ракете с точки зрения земного наблюдателя?

КОНТРОЛЬНАЯ РАБОТА №2

- 1. В баллоне содержится газ при температуре t_1 =100 °C. До какой температуры t_2 нужно нагреть газ, чтобы его давление увеличилось в два раза?
- 2. Вычислить среднее число $\langle z \rangle$ столкновений, которые испытывает молекула кислорода за 1 с при нормальных условиях.
- 3. Азот в количестве v=1 кмоль, который находится при нормальных условиях, расширяется адиабатно от объема V_1 до $V_2=5$ V_1 . Определить изменение ΔU внутренней энергии газа и работу A, выполненную газом при расширении.
- 4. Глицерин поднялся в капиллярной трубке на высоту h=20 мм. Определить поверхностное натяжение σ глицерина, если диаметр d канала трубки равен 1 мм.

Контрольная работа №3

1. В вершинах правильного шестиугольника со стороной a=10 см расположены точечные заряды Q, 2Q, 3Q, 4Q, 5Q, 6Q (Q=0,1 мкКл). Найти силу F, действующую на точечный заряд Q, лежащий в плоскости шестиугольника и равноудаленный от его вершин.

- 2. В центре сферы радиусом R=20 см находится точечный заряд Q=10 нКл. Определить поток $\Phi_{\rm E}$ вектора напряженности через часть сферической поверхности площадью S=20 см².
- 3. Два параллельных прямых длинных проводника, по которым в одном направлении текут токи $I_1 = 4$ А и $I_2 = 6$ А, расположены на расстоянии d = 10 см друг от друга. Определить магнитную индукцию поля в точке, которая отстоит от первого проводника на $r_1 = 5$ см и от второго на $r_2 = 12$ см.
- 4. В проволочное кольцо, присоединенное к баллистическому гальванометру, вставили прямой магнит. По цепи протекло количество электричества Q=10 мкКл. Определить изменение $\Delta\Phi$ магнитного потока через площадь кольца, если сопротивление R цепи гальванометра равно 30 Ом.

Контрольная работа №4

- 1. Точка равномерно движется по окружности против часовой стрелки с периодом T=6 с. Диаметр d окружности равен 20 см. Написать уравнение движения проекции точки на ось OX, которая проходит через центр окружности, если в момент времени, принятый за начальный, проекция на ось OX равняется нулю. Найти смещение x точки в момент t=1 с.
- 2. Груз подвешен на пружине, жесткость которой k = 0,1 Н/м, и погружен в среду с коэффициентом сопротивления r = 0,05 кг/с. Масса груза m = 1 кг. Определить добротность Q колебательной системы.
- 3. Определить скорость υ распространения волны в упругой среде, если разность фаз $\Delta \varphi$ колебаний двух точек среды, отстоящих друг от друга на Δx = 10 см, равняется $\pi/3$. Частота колебаний υ = 25 Γ ι L.
- 4. В вакууме вдоль оси OX распространяется плоская электромагнитная волна. Амплитуда напряженности электрического поля волны составляет 18,8 В/м. Определить среднюю энергию, которая проходит за t=1 мин через площадку $S=0.5\,$ м 2 , размещенную перпендикулярно направлению распространения волны.

Контрольная работа №5

- 1. На пути световой волны, которая распространяется в воздухе, поставили стеклянную пластинку толщиной h = 1 мм. На сколько изменится оптическая длина пути, если волна падает на пластинку: 1) нормально; 2) под углом $i = 30^{\circ}$?
- 2. Угол φ между плоскостями поляризатора и анализатора равен 45°. Во сколько раз уменьшится интенсивность света, который выходит из анализатора, если угол увеличить до 60°?

- 3. Фотоны с энергией $\varepsilon = 4,9$ эВ вырывают электроны из металла с работой выхода A = 4,5 эВ. Найти максимальный импульс p_{max} , сообщенный поверхности металла при вылете каждого электрона.
- 4. Энергия рентгеновских фотонов $\varepsilon = 0.6$ МэВ. Найти энергию электрона отдачи, если длина волны рентгеновских лучей после комптоновского рассеяния изменилась на 20%.

Контрольная работа №6

- 1. Определить энергию связи $E_{\rm cB}$, приходящуюся на один нуклон в ядрах; а) ${}_3^7Li$; б) ${}_7^{14}N$.
- 2. Определить количество ΔN атомов, которые распались в m=1 мг радиоактивного натрия $^{24}_{11}$ Na за время $t_1=10$ час. Период полураспада натрия $T_{1/2}=15,3$ час.
 - $\hat{3}$. Определить энергию Q ядерной реакции: ${}^{44}_{20}\text{Ca} + {}^{1}_{1}\text{H} \rightarrow {}^{41}_{19}\text{K} + {}^{4}_{2}\text{He}$.