
3. Physical fundamentals of mechanics  

3.1. Introduction to Mechanics 
3.1.1 Subject of mechanics. The concept of the mechanical motion. Body 

of reference and frame of reference 

Mechanics is the chapter of physics that studies the movement of the matter 

which consists in the simple displacement one of body relative another body (or 

system of them) accepted as unmoving in the problem that there is under 

consideration accepted as unmoving. The body which in the considered problem 

accepted as unmoving is called the body of reference. The body which in the 

considered problem is accepted as unmoving and the devices and attachments for 

time intervals and space distances measuring as well connected with the giving 

body form the frame reference. 
 

3.1.2. Stages of mechanical development. Classical, relativistic, and 

quantum mechanics 
In own development mechanics passed so stages: 

− classical non-relativistic mechanics (or Newtonian – Galilean 

mechanics); 

− classical relativistic mechanics; 

− quantum non-relativistic mechanics; 

− quantum relativistic mechanics. 

Near we will give review of this stage. We will notice the first stage relates 

to description of body motion on the base of Newton laws. Later on it was found 

that these laws have the restricted domain of applicability. On one hand they 

turned inapplicable to description of bodies moving with a speed v  close to the 

light speed sec103 8m/c  , that is 

 cv   (A) 

On the other hand it was established that all material objects possess by mutual 

nature namely particle-wave one. More exactly some wave is connected with each 

material object. This wave is called de Broglie one with wavelength  

 ph , (B) 

where 341062,6 h  is a Planck's constant, 
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momentum, m  is the object mass and v  is its speed. The wave properties of 

somebody become essential if it locates in linear size area a  which satisfies to the 

relation ~a .  

One may ignore bodies wave properties if the condition  

 a  (C) 

takes place for linear sizes of their localization area a . In this case mechanics is 

called classical. In the case when the inequality  

 cv   (D) 

takes place mechanics is called non-relativistic. When both of conditions (C) and 

(D) take place we have the classical non-relativistic mechanics or Newtonian – 



Galilean mechanics (it is called shortly the Newtonian mechanics). 

As it is seemed from the relations (B) – (D) Newtonian mechanics is used for 

slow motion macroscopic bodies describing.  

If the conditions (A) and (C) take place mechanics is called classical 

relativistic. In this case the relativistic effects are taken into account but the wave 

properties occurrence of the somebody is ignored as before. Conceptions of this 

mechanics are used in the describing of the electromagnetic waves propagation, 

some radioactive radiations types propagation etc. In common case one may say 

using of the classical relativistic mechanics is acceptable when the body has 

motion velocity which satisfies the inequality (A) and when spatial area of its 

localization is large enough (the inequality (C) is satisfied as it was noticed above).  

In nature the case may be realized when inequality  

 a  (E) 

takes place and the inequality (D) is valid also. Then we say about nonrelativistic 

quantum mechanics, which is used for describing the objects behaviour when one 

may ignore its relativistic properties (slow motion when the inequality (D) 

satisfies) but it is necessary to take into account their wave properties. The 

application objects of this mechanics are electrons of light atoms, electrons from 

the outer atomic shells in heavy atoms, electrons in the crystal lattice, etc. Domain 

of applicability of this mechanics is wide enough; particularly on its base heat, 

electrical and magnetic properties of solid are explained. 

If the inequalities (A), (D) we have the relativistic quantum mechanics. In 

this case at describing the objects behaviour one has to take into account as their 

relativistic properties connected with large motion velocity so their wave ones. As 

examples of the objects which for their describing require the relativistic quantum 

mechanics we will point out the electrons from the interior atomic shells in heavy 

atoms, atomic nuclei, microparticles in the accelerators etc. Besides consequent 

theory describing the objects behaviour with taking into account both their 

relativistic properties and the quantum ones simultaneously does not originated up 

to date. 

 

3.1.3. Newtonian and relativistic conceptions of space and time 
Mechanical motion consists in simple displacement somebody in the space 

in the course of time. The question arises about nature space and time, and about 

their properties.  

By space we will mean the philosophical category which is the form of the 

matter existence and which is connected with establishing sizes of the real subjects 

and their mutual displacement. By time we will mean the philosophical category 

also establishing the order of events in space and their duration. It is necessary to 

distinguish in the approach to solving of the problem in Newtonian and relativistic 

mechanics. In Newtonian mechanics space and time have the absolute character: 

space-time relations between objects and events do not depend on the viewer point 

of view. Besides relations mention above are independent ones from others. Finally 

in Newtonian mechanics space and time possess by properties of uniformity and in 

additional to this space possesses by the property of isotropy. Space uniformity 



means that in it there are no the pointed out points. In another words if one wants 

to select the origin of coordinate system there are no points which would be the 

most acceptable for this purpose. One may say the same in relative to time: on the 

time axis there are no the acceptable points for the origin of time reference 

selection. 

By passing to the relativistic conceptions of space and time it should kept in 

mind that these conceptions have some differences in special relativity and in 

general one. Let us consider the space and time properties which are common in 

both cases. First of all in this case space as well as time lose its absolute character 

and become relative concepts. Here the sizes of the objects and duration of the 

events and even their order depend on the viewer point of view. In this case instead 

of individual matter existence forms, space and time there is a single form of space 

– time. Whereas in Newtonian mechanics the event is characterized by space 

coordinates and by moment of time separately in relativistic mechanics it is 

characterized by the point in 4-dimensional space-time. In special relativity unified 

space-time possesses properties of uniformity and isotropy. 

Situation in relativistic mechanics is manifestly described by the great A. 

Einstein’s teacher G. Minkovsky: «The views of space-time, which I'm going to 

develop in front of you, have grown on the basis of experimental physics. That is 

their strength. They will lead to drastic consequences. Now the space itself, as 

well as time itself fully go into the realm of shadows, and only a union of both of 

these concepts retains an independent existence». 

Concerning general relativity we note in this case in comparison with the 

special one the 4-dimensional space-time properties of uniformity and isotropy are 

lost. Its properties occur closely connected with mass distribution in this space. 

This circumstance is good illustrated by Einstein’s words: «Substance indicates 

the space how to curve and space indicates matter how to move». 

 

3.1.4. Structure of mechanics as chapter of physics course 

As chapter of physics course mechanic in one’s turn consists of the 

following chapters:  

− kinematics; 

− dynamics; 

− statics. 

We will characterize these chapters. Kinematics is a chapter of mechanics 

which studies bodies motion without taking into account factors effecting on the 

motion character. Because on the motion character of the body its interaction with 

others bodies effects one may say that kinematics studies bodies motion without 

taking into account their interaction with others bodies. This chapter has the 

descriptive character. 

Dynamics is a chapter of mechanics which studies bodies motion with taking 

into account factors effecting on the motion character. Dynamics is the «heart» of 

mechanics. It describes bodies motion with taking into account interaction between 

bodies and therefore describing of the mechanical processes on the base of 

dynamics is more complete than on the kinematics base. 



Statics is a chapter of mechanics which studies the conditions of bodies 

equilibrium being under the forces acting. This chapter often is considered as a 

particular case of dynamics. In this part of book we pass to learn of kinematics. 

3.2. Elements of kinematics 

 

Learning task  

− become familiar with the basic kinematics concepts and learn to use them 

in solving the specific problems. 

 

Glossary 

Material point (particle) – is a physical body possessing by the mass but by 

the form and by the sizes of which it is possible to neglect in the problem under 

consideration. 

Radius-vector – is a vector which is directed from the coordinates origin 

into the point where the particle is. 

Displacement vector – is a radius-vector difference of two points of the 

particle trajectory. 

Velocity vector – is a vector characterizing the speed of the particle radius-

vector changing. 

Acceleration vector – is a vector characterizing the speed of the particle 

velocity vector changing. 

Tangential acceleration vector – is a total acceleration component which 

answerable for the changing of the velocity vector modulus. 

Normal acceleration vector – is a total acceleration component which 

answerable for the changing of the velocity vector direction. 

Circle of the curvature of the curve at the point – is a circle having a 

common point with given curve and touching it at two other closely located points.  

Curvature radius of the curve at given point – is the radius of the circle of 

the curvature of the curve at the point. 

Traversed path – is a distance between two points on the particle trajectory 

at which the particle becomes.  
Vector of the rotation angle (angular displacement) – is a vector which is 

on the rotation axis, modulus of which is equal to angular rotation magnitude, and 

which has such orientation that from its end considered rotation seems to be 

occuring anticlockwise 

Vector of the angular velocity – is a vector characterizing the speed of the 

particle angular coordinates changing. 

Vector of the angular acceleration – is a vector characterizing the speed of 

the particle angular velocity vector changing. 

Rigid body – is a particles system in which the distances between any 

couple of them are assumed to be constant. 

Number of freedom degrees of a mechanical system – is a quantity of the 

independent variables which is termed the position of the system in space. 



Generalized coordinates – are the independent parameters describing the 

position of a mechanical system in space, number of which is equal to the number 

of freedom degrees of the system. 

From the beginning we will introduce the concepts of material point: as 

material point we will suppose the physical body possessing by the mass but by the  

form and by the sizes of which it is possible to neglect in the problem under 

consideration. For reasons of convenience instead of the term «material point» 

further we will use the term «particle». Nearer we will introduce the main 

kinematic concepts. 

 

3.2.1. Radius-vector 

Radius-vector is a vector directed from the coordinates origin into the point 

where the particle is situated (see a figure 3.1). This vector is characterized by its 

coordinates or by its projections. It may be represented as a sum of vectors which 

are called components of this vector. 

These components define as follows.  

Let us define the unit vectors 

kji


,,  that have the unit length. These 

vectors are called by directions orts. 

Then we have  

kzjyixr


 . 

If the particle moves its coordinates 

zyx ,,  become the function of time, 

i.e. 

     ;;; tzztyytxx   then 

       ktzjtyitxtr


 . (3.1) 

In mechanics coordinates of the 

particle are accepted as the parameters, which define its mechanical state. Then, 

one of the major problem in kinematics is the determination of the particle radius-

vector in any point of time if it is known in the point accepted as the original. In 

order to solve this problem we will introduce some new concepts defined lower. 

 

3.2.2. A displacement vector 
Let us consider the motion of the particle along the trajectory. We will show 

the particle position on the trajectory in the time point 

t  and in the point tt  . Then the radius-vectors of 

the particle defined by the equality (3.1) are  tr


 and 

 ttr 


 and for difference between   tr


 and 

 ttr 


 we have  

    trttrr


 . (3.2) 

This vector is called by displacement vector 

(see figure 3.2). We will emphasize that any 

assumptions about smallness t  are not made here. 
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Figure 3.1. Radius-vector definition 
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Figure 3.2. To the displacement 
vector definition 



 

3.2.3. A velocity vector 

An interest of a change radius-vector speed may be for somebody. This 

speed is characterized by the quantity called by the velocity vector. We will define 

a quantity called by the average velocity for time interval of t . This quantity is 

defined as follows: 
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

, (3.3) 

where for r


  the expression (3.2) is used. Further we will define an instantaneous 

velocity vector or a velocity vector in point of time t . Using the equality (3.3) we 

will define an instantaneous velocity vector by the equation 

  
dt

rd

t

r
tv

t










 0
lim . (3.4) 

The expression 
dt

rd


 denotes that the instantaneous velocity is the first derivative of 

the radius-vector in respect to time.  

It is of interest to determine the direction of the instantaneous velocity 

vector. For this purpose from the beginning we will establish the direction of the 

average velocity and for solving given problem we will have recourse to the 

relation (3.3) and figure 3.2. Then we see that vector r


  lies on the secant line of 

the particle trajectory and the directions of vectors r


  and 
t

v



 coincide. When 

the limiting process 0t  occurs both points of the vector 
t

v



 intersecting 

with the trajectory approach each to other and the secant line of the trajectory takes 

the position of tangent line. Therefore one may conclude that the direction of the 

instantaneous velocity vector in some point of the particle trajectory coincides with 

the tangent line direction in the same point of trajectory. 

For the direction of the instantaneous velocity vector it is possible to trace in 

the next experiment. We will take the grindstone and give it to rotation. After that 

in a some point of the grindstone we will 

touch by the cusp of the file. This gives rise 

to sparks that come off the stone and the 

direction of the velocity of which in the 

separation moment coincides with the 

direction of the stone point linear velocity 

from which came off a spark. The 

experiment described above is illustrated by 

the figure 3.3. 

The expression (3.4) defining the  tv


 

in one’s turn is equivalent to three scalar 

equalities:  

       .;;
dt

dz
tv

dt

dy
tv

dt

dx
tv zyx   (3.5) 
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Figure 3.3. Experimental illustration of the 
instantaneous velocity vector direction: 
when the grinstone A rotates and the cups 
touches at the some point from this point 

the spark comes off at the same direction which 

has the grinstone point of touching by the cups  



With the help of the expressions (3.4), (3.5) for modulus of the instantaneous 

velocity vector we can write: 

        tvtvtvtv zyx

222  . (3.6) 

Velocity vector also may be presented in the form  

 vevv

 , (3.7) 

where v is the modulus of vector and ve


 is a vector of unit length which indicates 

the direction of the velocity vector; it is called by velocity ort. This form of 

velocity vector is very convenient for characteristic of its changing. 

 

3.2.4. Traversed path 

Here we will find the path traversed by the particle. For this purpose we will 

have recourse to the relation (3.4). This relation allows us writing  

    
t

r
tvtv

t 









0
lim . (3.8) 

Using smallness of the quantity r


  and as it may be shown from the figure 3.2 we 

will write that  

 Sr 


,  (3.9) 

where S  is the length of the path traversed by the particle over space of time t  

accepted near fixed moment t . Then relations (3.8) and (3.9) allow us writing 

    
dt

dS

t

S
tvtv

t







 0
lim


.  (3.10) 

It is follows from (3.10) that we may write 

   ttvS  ; (3.11) 

here we disregarded by the changing of modulus 

 tv  within the interval ttt , . 

The equality (3.11) can be considered as 

relating to the element of the particle trajectory 

with number «i» on which the trajectory is separated (figure 3.4). Then as it 

follows from (3.11) we can write 

 
iii ttvS  . 

For total path traversed by the particle from the moment of time 1t  till the moment 

2t  we obtain  

     dttvttvS
t

t
i

ni

i
i

t

 




2

1
10

lim . (3.12) 

Thereby we see that for calculation of the traversed path it is necessary to know 

the modulus velocity vector changing law over the time.  
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Figure 3.4. To definition of the 
traversed path of the body  



 

3.2.5. An acceleration vector 

3.2.5.1. Definition of the acceleration vector 

For many mechanical problems it is necessary to know the seed of the 

velocity vector changing. For this purpose the quantity is introduced which named 

by the acceleration vector. From the beginning we will define the average 

acceleration for the tine interval of t : 

 
t

v
a

t 









, (3.13) 

where v


  is changing of vector v


 for tine interval of t . Then using the relation 

(3.13) we may define an instantaneous acceleration by the equality 

  
dt

vd

t

v
ta

t










 0
lim . (3.14) 

Thereby the acceleration vector is the first derivative of the velocity vector in 

respect to time, or using definition of the instantaneous velocity (3.4) and equality 

(3.14) we have  

  
2

2

dt

rd

dt

rd

dt

d
ta












 , (3.15) 

that denotes that the instantaneous acceleration is the second derivative of the 

radius-vector in respect to time. 

In the case of the acceleration vector we can write the same expressions for 

its projections as it was made for the velocity vector (relations (3.5), (3.6)). Then 

we obtain 

      
dt

dv
ta

dt

dv
ta

dt

dv
ta z

z

y

y
x

x  ;; ,  (3.16) 

and for modulus of the acceleration vector we have 

        tatatata zyx

222  .  (3.17) 

 

3.2.5.2. A tangential and normal components of acceleration 

We will consider the accelerator vector of at greater length. For this purpose 

we will use the relation (3.7) expressing the velocity vector through its modulus 

and its ort. After inserting the equality (3.7) into relation (3.14) we obtain 

  
dt

ed
ve

dt

dv
ta v

v




 .  (3.18) 

Thereby we see that in the common case the acceleration vector is represented by 

the sum of two terms. The first of them  

 ve
dt

dv
a


   (3.19) 

is called by the tangential acceleration. This vector lies on the same line as the 

velocity vector and it is answerable for the changing of the velocity vector 



modulus. One can see from (3.19), that if the velocity vector modulus increases 

with over time 







 0

dt

dv
 the tangential acceleration vector coincides with the 

velocity vector by the direction, and if over time the velocity vector modulus 

decreasing 







 0

dt

dv
 takes place both vectors a


 and v


 have the opposite 

directions. Therefore for modulus of the tangential acceleration vector it is possible 

to write  
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dt
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







.  (3.20) 

The second term in sum (3.18) is connected with the direction changing of 

the vector velocity, and it is called by the normal acceleration.  

Further we will define the relative orientation of the vectors mentioned 

above. We notice that vectors a


 and ve


 are parallel (or are antiparallel) one to 

another and vector na


 has the same properties in respect to the vector dtvd


. Let 

us consider scalar product  

 12  vvv eee


  (3.21) 

(we used the fact that vector ve


 has unit length). Now we take the derivative  

 
dt

ed
e

dt

ed v
v

v





 2

2

.   

From the equality (3.21) it follows that  

 0
dt

ed
e v

v




. (3.22) 

The relation (3.22) shows that vectors ve


 and 
dt

ed v


 are mutual orthogonal. In one’s 

turn from the last assertion it is follows that vectors a


 and na


 are mutual 

orthogonal also, i.e.  

 naa


 .  (3.23) 

Thereby from the relation (3.18) we can write  

 naaa


  , (3.24) 

where vector a


 is called by the vector of total acceleration. From the relations 

(3.18) and (3.19) it follows that the modulus of total acceleration vector may be 

defined by the equality 

 
22

naaa   .  (3.25) 

Formula (3.25) is completely equivalent to (3.17) for calculation of total 

acceleration.  



Now we are ready to solving the major problem of kinematics noticed at the 

end of paragraph 3.2.1. We will consider the right part of the expression (3.4) as 

vulgar fraction; then we can write 

   dttvrd 


. (3.26) 

In written equality rd


 is a small displacement which particle suffers during time 

interval dt . For finding of the finite displacement vector we have to integrate the 

equality (3.26) that is  

 
 

 

  
t

t

tr

tr oo

dttvrd





, 

where t  is the present point of time, 0t  is the point of time which accepted as 

original,  tr


 is the radius-vector of the particle at the present point of time, and 

 0tr


 is the radius-vector of the particle at the point of time which is accepted as 

original. 

After making of the integration and performing simple transformation we finally 

obtain 

   
t

t

dttvtrtr
0

)()( 0


. (3.27) 

Thereby we see that for determination particle radius-vector at any point of time 

one must know it at some point accepted as original and also the low of the 

velocity vector changing  tv


 over the time. As it follows from relations (3.14), 

(3.26) and (3.27) in one’s turn for finding this law we must know the total 

acceleration vector changing law over the time.  

In connection with said above the question arises about of higher derivatives 

in respect to time of radius-vector knowledge for calculation of this vector. The 

reply is given in dynamics and consists in the following. Nature is organized so 

that knowledge of higher derivatives of radius-vector in respect to time is not 

necessary and for solving stated problem restriction by the first two derivatives in 

respect to time is quite enough.  

 

3.2.5.3. Some geometrical information 

For fullness of the considering it 

remains to find to what equal the 

modulus of the normal acceleration 

vector. For this purpose it is necessary 

to introduce some geometrical 

concepts. We will introduce some 

geometric definitions and for this 

purpose we will consider some curve l 

(figure 3.5). In geometry there is the 

next important statement: one can 

represent almost any curve as a set of a 

circle arcs with different radii and with 

Figure 3.5. Elements of planar curve geometry: 
a –  the circle of the curve curvature, 

O – the curve curvature centre at the point A,  
R – the radius of the curve curvature at the point A. 
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R

B
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different centers locations. If one chooses the point A (figure 3.5) and the points B 

and C in its neighbourhood he can draw one and only one circle through these 

points. This circle is named by the circle of the curve curvature in the point A, the 

point O is named by the curve curvature centre and the radius of this circle R  is 

named by the curvature radius of the curve in given point
1
. Last assertions allow us 

to consider particle motion along the circle instead of its motion along the arbitrary 

curve. 

In addition to mention above we will show how the curvature radius of the 

planar curve may be evaluated. On the figure 3.6a is represented rotating of the 

unit tangential vector e


 of the some planar curve which in consequence of the 

assertions expressed above may be considered as rotating along the circle. As a 

measure of the curve curvature at the point we will take  
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








lim

0

, (3.28) 

where   is a rotating angle of unit vector e


 when this vector displaces to the 

point which is at a distance S  from the first of them. 

We can establish connection between the curvature and radius of the 

curvature at the point. Taking in the account that the angle   is central we may 

write 
R

S
 , whereas 

 
RdS

d

S
k

S

1
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0












. (3.29) 

Further we will use the relation  

 
222 dydxds  ,  (3.30) 

which follows from the figure 3.6b. Using the relations (3.28) – (3.30) we write 
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From the definition of the geometrical meaning of derivative (figure 3.6b) we have 

    xxy
dx

dy
 tg  

and inversion of the function  xtg  gives  

    xyx  arctg , 

whereas 
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After substitution of the relation (3.32) into (3.31) for curve curvature we obtain  

                                           
1
 Work of such drafting instrument as French curve is based on these assertions. 
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With the help of the relation (3.29) found expression allows us to define the 

curvature radius at the fixed point of the curve.  

 

 
 

3.2.5.4. Vector of the normal acceleration; calculation of its modulus 

and its direction definition 

For solving of the problem formulated in the title we will address to the 

figure 3.6c. In this figure vector  tev


 shows the velocity direction in the moment 

of time t and vector  ttev 


 shows the vector direction in the moment of time 

tt  . If one wants to definite vector na


 he must find the difference 

   tettee vvv


 . For finding vector of the normal acceleration na


 using 

relationship (3.18) we can write  
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For modulus of na


 also write  
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.  (3.34) 

For finding modulus ve


  we will transfer vector  tev


 parallel to itself in the point 

where vector  ttev 


 is situated. Then vector modulus ve


  may be found from 

the isosceles triangle formed by the vectors  tev


,  ttev 


 and ve


  (see figure 

3.6c). We will use the theorem about the angles formed by the mutual 

perpendicular sides (these angles are shown in the figure 3.6c), whereupon we 

have  

Figure 3.6. To derivation of the formula (3.29) for the curve curvature 
at the point and for the formula (3.36) for the normal acceleration: 

a – to derivation of the formula (3.29); b – to derivation of the formula (3.33) for the curve curvature at the point; 
c – to derivation of the formulas for the curve curvature at the given point 

and modulus of the normal acceleration vector. 
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and further using by the smallness of the angle   we obtain  

 
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
2

2ve
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. (3.35) 

Then from the relationships (3.34) and (3.35) it follows  

 

t

ev

t

van











lim
0

=
tt

v





lim

0

. 

Further we will multiply the right side of the obtained equality by R  (circle radius) 

and divide it by the same quantity:  
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. 

The numerator of the obtained fraction RS   is the circle arc length on 

which the central angle is leaned. In consequence of saying and taking into account 

relation (3.10) we have  

 
R

v

R

v
a

t

S

t
n

2

lim
0








.  (3.36) 

Written formula is the final result for which obtaining we strived.  

Concerning direction of the vector na


 we will say the next. As it follows 

from the expression (3.15) the vectors   , aan


are mutually transverse one to 

another. In additional to that from the figure (3.6c) one may see that when the 

angle   tends to zero vector ve


  defining orientation of vector na


 tends to the 

acceptance of the circle radius position and is directed to the centre of the circle. 

Therefore vector na


 is often called as the centripetal acceleration. 

 

3.2.6 Rotational motion kinematics 

3.2.6.1 Rotational motion kinematics of the material point. Vector of the 

rotation angle 

Lower it is considered the rotation around the fixed axis. Let us in the 

arbitrary point of time the particle is in the point A (figure 3.7a), and over the space 

of time t  it passes to the point B; so that it rotates on the angle  . One may 

interest in the rotation direction in the analogue with the case of the translational 

motion when we designate not only a magnitude but also the direction of the 

motion. In order to do it, it is introduced the quantity which is called by the 

rotation angle vector or by the vector of the angular displacement 


. This vector 

is defined as a vector which there is on the rotation axis, modulus of which   is 

equal to angular rotation magnitude, and which has such orientation that from its 



end considered rotation seems to be occurring anticlockwise. The meaning of this 

value is illustrated by the figure 3.7a. 

 It should be remembered that vectorial character one may assign to the 

small angle of rotation only; in particular if we are dealing with angles of arbitrary 

magnitude they do not satisfy to rules of the vectors summation and therefore it is 

impossible to consider as a vector an angle of arbitrary magnitude.  

 

3.2.6.2 Vectors of the angular velocity and of angular acceleration. By 

complete analogy with the case of the translational motion we introduce the vector 

which characterizes a speed of the particle rotation and its direction. This vector is 

defined by the relation 
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; (3.37) 

it is called by the angular velocity 

vector. From introduced relation it is 

possible to define a direction of the 

angular velocity vector (see figure 

3.7b). 

Namely because the rotation angle 

lies at the rotation axis as one can see 

from the relation mention above the 

angular velocity vector lies at the 

same axis too. As the rotation axis it 

is convenient to choose axis «z» so 

we have 

  zyx ,0,0


. 

Hence we may conclude that the direction of the angular velocity vector coincides 

with the positive axis «z» direction if the rotation angle over time increases. If this 

angle decreases over time the direction of the angular velocity vector is opposite to 

the positive axis «z» direction. So in our case one may write 
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(rest of projections of the angular velocity vector are equal to zero). Similarly, we 

may introduce a quantity  
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, (3.38) 

which is called by the angular acceleration. In the case under consideration this 

vector has projections  0,0,0  zyx


. The relation 0




dt

d z
z  takes 

place if projection z  increases over of time and the inequality 0



dt

d z
z  

fulfils in the otherwise.  
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Figure 3.7. To definition of the vectors angular 
replacement and angular velocity: 

a – to definition of the angular replacement; 
b – to definition of the vector angular velocity. 



3.2.6.3 Connection between the linear and angular quantities. From the 

beginning we will find the connection between the linear and angular 

displacements. With this purpose we will turn to the figure 3.8a. In this figure r  is 

the circle radius along which the particle rotates   is its rotation angle over space 

of time t . This angle coincides with the central angle of the circle mentioned 

above therefore we can write  rS  where S  is a length of the circle arc 

upon which given angle based on. In given figure O  is the coordinates origin, C is 

centre of circle,  tR


 is the particle radius-vector in the point of time t ,  ttR 


 is 

the consequence quantity in the point of time tt  , R


  is a linear displacement 

vector,   is the angle formed by the rotation axis (axis «z») and by the particle 

radius-vector  tR


 (or  ttR 


).  

In consequence of smallness of S  and of R


  we may accept RS


  and then 

we will write 

  rR


.  (3.39) 

Further from the figure 3.8a we see that  sinRr  and therefore for equality 

(3.39) we have 

  sinRR


.  (3.40) 

It is easy to see that right hand of the equality (3.40) represents the vector product 

of the vectors 


 and R


. By other words  

 RR


 .  (3.41) 

Using by the figure 3.8a and by known geometrical theorem about three 

perpendiculars one can make sure that the order of the multipliers in the relation 

(3.41) is chosen correctly. This equality represents the required relation between 

the linear and angular displacements. 

From the relation (3.41) we will obtain the connection between the vectors 

of linear and angular velocities. Namely using the equalities (3.37), (3.39) we will 

have  
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From figure 3.8b we determine the direction of the vector v


. 

Obtained relation represents the required relation between the linear and 

angular velocities vectors. It is possible to use this relation for finding connection 

between the modulus of the linear and angular velocities vectors. Indeed from the 

relation (3.42) it is possible to write 

 r
t

r
t

R
v

tt













limlim

00



. (3.43) 

It is the required connection between the vectors of linear and angular velocities.  

 



 

 
 

Now we enter to establishing the connection between the vectors of linear 

and angular accelerations. With this purpose we will initiate from the expression 

(3.14), using the relation (3.42) and the rules of the product differentiation. Then 

we obtain 

dt

Rd
R

dt

d

dt

vd
a








 . 

From relations (3.38) and (3.42) it is possible to write obtained result in the form 

vRa


 . 

Using the relation (3.19), (3.38) we see that  

R
dt

d
a







  

is the tangential component of the linear acceleration, and  

van


  

is its normal component. For modulus of these quantities we have  

Figure 3.8. Establishing of the connection between the linear and angular values: 
a – connection between the linear and angular displacement vectors; 

b – connection between the linear and angular velocities; 
c – connection between the linear and angular accelerations; 

d – connection between the linear velocity, angular velocity and normal acceleration vectors. 
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, (3.44) 
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v
rvan

2
2  .  

Last formula coincides with formula (3.36) obtained early (3.2.5.4). With the help 

of the figures 3.8c and 3.8d it is possible to be convinced of the choice of the 

directions of the vectors a


 and na


 is in the agreement with one which was 

defined in (3.2.5.4). 

 

3.2.6.4 Remarks about rigid body kinematics which has fixed rotational 

axis 

First of all we will introduce the concept of the rigid body. By rigid body one 

means the particles system in which the distances between any couple of them are 

assumed to be constant. It is obviously that the concept introduced by such a 

manner is a physical model in which we neglect by the possibility of the body 

deformation. There are rather large number of problems for which noticed 

neglecting is quite acceptable. One from these problems is the kinematics of the 

rigid body, and in particularly in the case when the last has the fixed axis of 

rotation. 

Considering kinematics of the rigid body 

motion which has a fixed rotational axis 

we would note that in this case such 

linear characteristics as radius-vector, 

displacement, linear velocity and 

acceleration are meaningless for the total 

body. As one may convince of the 

figure 3.9. linear characteristics 

mentioned above for different body 

points are different too. At the same time 

there are kinematical quantities which 

may be chosen as characteristics of the 

total body state and of its motion. Such 

characteristics are the angular quantities. Namely as kinematical characteristics of 

the state and of the motion rigid body having fixed axis of rotation we take the 

angular displacement, angular velocity and angular acceleration, which were 

introduced for the material point in 3.3.1.1 and 3.3.1.2. 

 

3.2.7 Number of freedom degrees of the mechanical system. Concept on the 

generalized coordinates. 

3.2.7.1. Concept of number of freedom degrees of the mechanical 

system. 

In paragraph 3.2.1 it was noticed that coordinates of a particle are the 

quantities which enter in the number of its state characteristics. So a mechanical 

state of a free particle moving in three-dimensional space is characterized by three 
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Figure 3.9. Linear quantities 
of the different points of the rigid body 



coordinates. However, there may be cases when not all of these coordinates are 

independent on. So, when a particle moves along the surface of its coordinates two 

of them are independent on only: if particle coordinates x and y are specified its 

coordinate z can be determined from the surface equation  

  yxfz , .  

The same situation takes place when the particle moves along the line 

defined by the system of equations  
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.0,,

;0,,

2

1

zyxf

zyxf
 (3.45) 

If one solves one of given equations e.g. the second one, relative the variable z he 

will obtain  

  yxgz , . 

By inserting of obtained expression into the first of equations (3.45) we have 

    ,0,,,1 yxgyxf   

whence we see that it is possible to determine one from variables x and y if another 

variable is given. These reasoning show that if the particle moves along the 

arbitrary curve of its coordinates describing its state in the space is independent on 

only one of them: 

Given examples show that in some cases not all particle coordinates it is 

necessary to define when its mechanical state is specified. This allows entering a 

new concept for describing of the position of the particle in space. In other words 

we will enter concept of the number of freedom degrees of the particle meaning 

under this concept a number of independent on variables required for total 

describing of the particle position in space. From given examples we see that free 

particle in three-dimensional space has three degrees of freedom, the particle on 

the surface has two degrees of freedom, and the particle motion of which is 

restricted by some curve has one degree of freedom only.  

It is not difficult to generalize given reasoning on an arbitrary system of the 

particles. From the beginning we will consider the system consisting of two 

particles. In general this system has six degrees of freedom that are the coordinates 

of the particles However, if the particles are coupled by the rigid coupling a 

number of the system freedom degrees decreases. Really, in this case, as it is 

known from geometry, a distance between the particles with coordinates 111 ,, zyx  

and 222 ,, zyx  (figure 3.10a) is determined by the expression  

      212
2

12
2

12
2
12 zzyyxxl  , (3.46) 

from which it follows that one from six of particles coordinates may be determined 

if rest of five from them are known. So, we see that in the case under consideration 

five from six coordinates only may be considered as independent on. Then we may 

say that the system under consideration has five freedom degrees.  

Let us consider the system consisting of three particles. It is easy to see that 

in general case this system position in space is characterized by nine quantities 

333222111 ,,,,,,,, zyxzyxzyx  (figure 3.10b). which are the coordinates of 



corresponding particles. If a rigid couple is imposed on the particle, in addition to 

the relationship (3,46) we may write  
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 (3.47) 

Given relations and relation (3.46) allow us to determine three coordinates of the 

particles if rest of them are known (instead of one from given relationships one 

may specify the angle   between any of lines shown in the figure 3.10b). 

Therefore one may say that given system has six degrees of freedom.  

Summarizing, we say that the mechanical system consisting of N particles, has 

rNf  3  degrees of freedom, where r is the number of additional relations 

imposed on the coordinates of the particles. These relationships are usually called 

as couplings. 

3.2.7.2. Spherical and cylindrical coordinates and their connection with 

Cartesian ones.  

Although mentioned above Cartesian coordinates other ones are used. As the 

example of these coordinate systems the spherical and cylindrical coordinates will 

be considered. From the beginning we will return to the spherical coordinates. In 

this case a particle position in space is specified by its distance r  from some point 

called as centre, by polar angle   and azimutal angle   (see figure 3.11a). The 

connection between the rectangular coordinates and spherical ones is given by the 

following relations:  
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In the cylindrical coordinate system a particle position in space is specified 

by its distance r  from some axis (axis oZ), by the azimutal angle  , and by the 

coordinate z, modulus of which is equal to the particle distance from the plane 

0z  The connection between the rectangular and cylindrical coordinates is given 

by the following relations: 

Figure 3.10. To calculation of the freedom degrees number of the particles system: 
a – system consisting of two particles; 
b– system consisting of three particles. 
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This connection is shown on the figure 3.11b. 

 

3.2.7.3. Number of freedom degrees of  rigid body. For solving of great 

number of physical problems it is necessary to know the number of freedom 

degrees of  rigid body. In this connection we will make an attempt to calculate 

mentioned quantity below. We will to origin from the assertion that a rigid body is 

such particles system in which the position of ever particle is specified by three 

coordinates. Therefore if system consists of N particles the position of total body 

may be specified by 3N coordinates of particles forming body which is under 

consideration. However, not all coordinates from 3N mentioned above are 

independent on. Really, initiating from the rigid body definition, for coordinates of 

any couple of its particles with numbers «i» and «k» a relation exists, which is 

similar to (3.46) and (3.47): 

       .
2222

kikikiik zzyyxxl   (3.48) 

As it follows from written relation it allows defining one from particle coordinates 

of number «i» if other quantities in given relation are known. Then we see that in 

order to definition all particle coordinates one has to consider three of all possible 

relationships only which are similar to (3.48) and are relevant to considered 

particles couple.  

For solving formulated problem we will give all sorts of particles pairs 

couplings in the system which is under consideration: 

Figure 3.11. Coordinates different from Cartesion ones: 
a – spherical coordinates; 

b – cylindrical  coordinates. 
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This table contains 1N  rows. From given table one can see that for 

determination of the coordinates x  of 1N  particles it is enough to use the first 

elements of every row if the rest of coordinates are specified. This gives 1N  

relationships. By the same operation using the second elements of every row we 

may obtain 2N  relationships for determination of the coordinates y of 2N  

particles. Finally, for obtaining particles coordinates z we will use the third 

elements of every row of our table if the rest of coordinates are assumed to be 

specified, as it was assumed in the previous cases and as a result of this operation 

we will obtain 3N  relationships for 3N  particles. Then we have 

63321  NNNNr  of relationships which are the couplings 

between the coordinates of rigid body particles and in according to definition of the 

number of freedom degrees of the mechanical system we may say that free rigid 

body has  

   66333  NNrNf    

degrees of freedom. So, free rigid body has six degrees of freedom. It is interest to 

note that a system consisting of three particles which do not lie on the same 

straight line has the same number freedom degrees (see the equality (3.47) and 

reasoning after it). From this assertion it is possible to conclude that position of any 

free rigid body in space may be specified by position of its any three particles not 

lying on the same straight line.  

From other hand we may say that position of free rigid body in space is 

characterized by specification of three coordinates of its centre of inertia and three 

rotational angle of mutual perpendicular axes connected with body, which form 

these axes with the coordinate ones.  

Rigid body rotating around a fixed point has three of freedom degrees, and 

body that rotates around immobile axis, has one of the freedom degree only. This 

degree of freedom is the rotating angle. 

3.2.7.4. The concept of the generalized coordinates 

 For solving of great quantity of physical problems it is convenient to 

describe the mechanical system by such number of coordinates which corresponds 

to the number of its degrees of freedom. As an example we will consider the 

system which consists of two particles which are connected one with another by 

the rigid coupling and which as it was noticed early (text after formula (3.46)) has 

five degrees of freedom. The position of the first of the particle we will specify by 

its three Cartesian coordinates. Connecting the origin of the spherical coordinates 

system with the first of the particle we will specify the position of the second of 

particle by the angles   and angle   which were entered earlier (see figure 3.11a).  



Independent parameters which describe the position of the mechanical 

system in space and which number are equal to number of their degrees of freedom 

are called as generalized coordinates. Concept of generalized coordinates is 

widely used in quantum mechanics, statistical physics and thermodynamics and 

other chapters of physical science. In particular this concept is widely applied in 

solid physics when the mechanical, electrical, magnetic and thermal properties of 

solid are described. 


