
3.2.8 Examples of the problems solving 

1. An airplane climbs angularly of 30  to the horizontal with an acceleration 

of 2/245 secma  . From the airplane an object dropped out sect 41   later after 

the lifting. Determine: 1) how much longer after dropping   an object will fall to 

the ground; 2) the speed v  of the object sect 22   later after its dropping out of the 

airplane; 3) its normal na  and tangential a  accelerations when it is falling on the 

ground. 

Solution. 1) We analyze the motion of an object being dropped from an 

airplane, considering the airplane and the object as material points and we will 

choose the coordinates origin in the point from which the airplane begins its climb 

(see figure 3.12). If 1tt   the object there is at the airplane and moves together 

with them. Then for this time interval from the 

definition of the acceleration vector and using the 

figure 3.12 for object acceleration projections we 

have  
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From the beginning we restrict oneself by the considering of the projection on the 

axis «x». Then after integrating the first of the equations (3.49) we can write  

  
1cos Cta

dt

dx
tvx  . (3.50) 

In given relation t is the current variable and 1C  is the integration constant which 

has the meaning of the initial velocity projection on the axis «x». Since   00 xv  

from the equality (3.50) we have  

   00 1  Cvx  

and consequently  

   tatvx  cos ,  (3.51) 

if 1tt  . When 1tt   for the acceleration projection on the axis «x» the next 

relation takes place  
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whence 0
dt

dvx  and so  

  
2Ctvx  ,  

where 2C  is a new integration constant. We will determinate this constant from the 

condition   211 cos Ctatvx  , and finally for velocity projection on the axis 

«x» after integrating of the relation (3.52) over the variable we obtain 
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Figure 3.12. To the solution 
of the problem 3.1 
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This result is pre-clear because after the object dropping out from the airplane it 

has no the acceleration horizontal projection. 

Let us research the vertical projection of the object velocity. Using the same 

considerations that were given when the equations (3.49) had been solved for 

derivatives we write 
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From the beginning we will consider the case 1tt  . As a result of solving of the 

first of the equations (3.54) we will obtain  

  
3sin Cta

dt

dy
tvy  ,  

where 3C  is an integration constant is determined from the condition 

  00 3 Cvy  and therefore  

  
1if,sin tt  tatvy  .  (3.55) 

Further we will consider the case 1tt  . This case includes two of time intervals: 

the first of them is the interval cttt 1  ( ct  is time moment when the object 

occurs in the highest point of its trajectory after the object dropping out from the 

airplane), and the second interval ctt   is the time of the object falling on the 

ground after culmination by them the highest point of its trajectory. For this case 

we will use the second equality from (3.54), and thereafter we have  

  
4Ctgtvy  .  

The integration constant 4C  is determined from the condition 

  1411 sin taCtgtvy  , whence 114 sin tgtaC  , and then for the 

time points which belong to the interval cttt 1  it may be written  

    
11sin ttgtatvy  . (3.56) 

Finally from the equalities (3.55) and (3.56) for vertical projection of the object 

velocity vector we obtain  
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The time moment in which object achieves the highest point of its trajectory is 

determined from the condition 

     0sin 11  ttgtatv ccy  

whence it follows 
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Besides we will establish the law of changing the quantity  tvy  for the 

space of time ctt  . Using the second of the equalities (3.54) we obtain  

  
5Ctgtvy  ;  

here 5C  is the next integration constant, for the determining of which the condition  

   0cy tv   

has been used. This condition gives 05 C  and as the result we have the next 

object velocity vertical projection changing law in the total time interval which is 

interested for us: 
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At last we will find the object falling time on the ground from the highest 

point of its trajectory. For this purpose we will determine the coordinate « maxy » of 

the highest point of the object trajectory. In connection with mentioned above we 

have 

  
21

0
max yydttvy

ct

y   , (3.60) 

where  
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here 1y  is the coordinate of the highest point of the object trajectory achieving by 

them when it was climbing together with the airplane, and 2y  is the addition to the 

coordinate mentioned above in consequence of the climb continuation of the object 

after its dropping out from the airplane. After inserting of the value time point ct  

(formulae (3.54)) in the second of the equalities (3.61) and using the relation (3.56) 

we obtain  
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From the point with the coordinate maxy  the object will make the free falling 

on the ground. The time point of this falling ft  enters in the expression  
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By using the third relation from given in (3.59) and inserting it into the previous 

equality (3.62) we have  

   .
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If one will equate left parts of the expressions (3.60) and (3.63) and will solve the 

obtained equation in respect to ft  he can write  
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For finding the total falling time which is interested for us we write  

 fc  , (3.65) 

where  

 1ttcc    (3.66) 

is the time climb of the object till the highest point of its trajectory after its 

dropping out from the airplane, and  

 cff tt    (3.67) 

is the time of its free falling from the point mentioned above. By using the values 

of fc tt , , determined by the relations (3.58) and (3.64) and the value of 1t , given in 

the problem condition and with the help of the relations (3.65) – (3.65) we find c  

and f . Then by inserting c  and f  values into the expression (3.65) we obtain 

the answer on the problem question: 
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Finally substituting numerical data given in the condition of the problem in the 

expression (3.68) we have 

 sec0,102 . 

2) We will ascertain on which of the part of its trajectory the object occurs in 

the point of time 213 ttt  . For this purpose we will calculate the moment of time 

ct  corresponds to the highest point of the object trajectory using the relation (3.58) 

and further we will compare it with the moment of time secttt 6213  . For the 

moment of time ct  we have .0,54 sectc   Thereby we see that in the case under 

consideration the inequality 3ttc   takes place and for the problem solving the 

second from the relations (3.53) and (3.57) must be used. Then using determination 

of the velocity modulus (3.6) we obtain 
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Substitution of the numerical data given in the statement of a problem in the 

obtained formulae gives  

   ecsmtv 9703  . 

3) As the relation (3.36) shows for determining the object normal and 

tangential acceleration in fixed point of time it is necessary to know its velocity 

modulus as a function of time near the same point of time. With this purpose we 

will use the second relation from ones in (3.57) and the third relation from ones in 

(3.59) following which to determinate the object velocity modulus in the time 

interval defining by the third relation in (3.6) we have  
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For determining tangential acceleration we use the relations (3.19), (3.70) and as 

the result we will obtain . 
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Concerning finding of the normal acceleration there are two ways for achieving of 

the formulated aim. The first of them supposes the strike using of the formula 

(3.36). This way occurs extremely tedious because it demands knowledge of the 

curve curvature radius in the point of the object falling. In one’s term for 

determining this radius it is necessary to know the equation of the object trajectory 

what demands additional calculations.  

Here there is the circumstance easing the problem solving. Indeed the object 

total acceleration modulus it is known to us and it is equal to 29,8m/secg   if 

1tt  . Then by using the expression (3.25) it is possible to determine the normal 

acceleration from the equality  
22

 agan . 

By substituting into given equality the value a  

determined from the relation (3.71) we have  
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The expressions (3.71) and (3.72) are the 

solutions of the problem in the common case. Now 

we are proceeding to numerical calculations. In our 

case secttt f 1061  , consequence 
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negative sign in the obtained value is connected 

with the negativity of the vector velocity projection 

on the axis «y» (figure (3.13));. By analogy with 
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Figure 3.13 To the solution 
of the problem 3.2 



the tangential acceleration for normal projection we obtain 
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2. For the point of the earth’s surface located at a Kiev latitude ( 7250   ) 

determine the linear velocity v of its daily rotation and also its normal acceleration 

(for Earth’s radius the value mR 6104,6   may be taken). 

Solution. From figure 3.13 we see that the point mentioned above rotates 

along the circle with radius  cosRr  having the angular velocity coincident 

with ones of the daily Earth rotation. This quantity is equal to T 2 , 

secT 41064,8   is a period of the mentioned rotation. Using the connection 

between the linear and angular velocities (3.43) and making required substitutions 

finally we obtain  

   .4,296cos2 secmTRrv   

3. The particle moves along the axis «x» and its velocity projection changes 

in according to the law   2/2,4, secsmBsecsmA BtAtvx   beginning 

motion from the origin (the point 0)0( x ). Determine: 1) the particle coordinates 

 itx  in points of time sect sect sect 6,4,2 321  , measured from the time 

origin; 2) path S  traversed by the particle over time interval during the time 

interval from the time origin till the point of time sect 63  .  

Solution. 1) Using the formula (3.27) for coordinate «x» of particle we write 
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where symbol «i» runs the values 3,2,1i . Inserting the expression for )(tvx  given 

in the problem condition into (3.73) and taken into account that 0)0( x  we have 
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what is the answer on the question of the problem in the common case. For various 

meanings «i» by using of the expression (3.74) and the numerical data given in the 

problem condition we obtain 
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2) Concerning calculating the path traversed by the particle we will proceed 

from the expression (3.12) whence it follows that to answer the question problem 

we must have the law of particle velocity modulus changing in respect to time. 

Using the problem condition we write 
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In given expression st 2  and it is the root of the equation 0 tBA . Making 

corresponding substitutions to the equality (3.75) we obtain  



 smS 20 . 

4. The particle emitted by the source passes the distance L  with constant 

speed. Then it begins to brake moving with acceleration a . Determine the speed 

sv  under which the total time of the particle motion is the smallest.  

Solution. The total time of the particle motion is equal to 

 21 ttt  , (3.76) 

where 
v

L
t 1  is the time of its uniformly motion with constant velocity, and 

a

v
t 2  

is the particle motion time after the braking appearing. Then the equality (3.69) 

may be written in the form  
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As it seen from the relation (3.77) time t  is the smallest if 0
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5. In the process of the particle motion along the planar curve radius-vector 

of the particle changes in according to law   tjBtiAtr  cossin


, where 

smB smA 3,2  . Determine: 1) the equation of the particle trajectory in the 

manifest form; 2) particle velocity modulus as the functions of the particle 

coordinate «x»; 3) the largest and the smallest values of the particle velocity 

modulus as the functions of the particle coordinate «x»; 4) the total, tangential and 

normal accelerations of the particle as the time functions; 5) the total, tangential 

and normal accelerations of the particle as functions of the particle coordinate «x»; 

6) the largest and the smallest values of the total, tangential and normal 

accelerations of the particle as functions of the particle coordinate «x»; 

Solution. 1) The vector equation given in the text of the problem is 

equivalent to following two scalar equations: 
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Set of the equations (3.78) represents the ellipse equation in the parametrical form. 

For obtaining the ellipse equation in the manifest form we write 

    tBty tAtx  cos;sin  whereupon we obtain 
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and using the problem data for the equation in the manifest form finally we have 
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2) Using the relation (3.78) we find the velocity vector projections: 
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With the help of the relations (3.6), (3.80) we write  

      tvtvtv yx

22  = tBtA  2222 sincos , (3.81) 

and with the help of the relation (3.79) we may represent the particle coordinate 

«y» as a function of its coordinate «x»:   
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then for the answer on the question of the problem by using relations (3.79) and 

(3.75) we obtain 

     2222 1 xABAxv  . (3.83) 

3) The largest and the smallest values of the particle velocity modulus as the 

functions of the particle coordinate «x» is determined by the analysis given near. 

Let us consider the cases BA  and BA  separately. 

a) BA . Using (3.76) we have  

;if,;0if, Ax Bv x Av smallargl   

b) BA . Repeating previous reasoning we obtain: 

.0if,;if,  x Av Ax Bv smalllarg  

4) From the equalities (3.17) and (3.80) we determine the total acceleration 

as a time function: 
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For the tangential acceleration by using the relations (3.20), (3.81) we have 
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We find the expression for the normal acceleration with the help of the relations 

(3.25), (3.85): 
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5) For representation of the expressions for the a a,  and na  as functions of 

the point coordinate «x» at the curve we will use the equalities (3.82), (3.84) – 

(3.86). Then we finally obtain 
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6) In order to obtain the answer on the question formulated in the problem 

condition we will consider the cases BA  and BA  separately. 

a) BA . Using (3.80) we have  
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b) BA . Repeating previous reasoning we obtain: 
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Finding the largest and the smallest values of the tangential acceleration is 

more complicated problem. For its solving we will to proceed from the expression 

(3.80) for the tangential acceleration. Let us introduce the variable  2Ax  and 

consider the function  
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where 122  ABc . The function (3.88) enters in the formula (3.87) for the 

tangential acceleration of the particle. Analysis of this function is sufficient to 

receive the answer on the question which is interesting for us. The function (3.88) 

vanishes if 0  and if 1 , and must obey the conditions 

 
 

1

,0



f
 (3.89) 

(see formula (3.80) for tangential acceleration) and thus at the points 1;0  it 

reaches the smallest value. Then the function (3.88) gets the greatest value at the 

point which is the root of the equation   0f . As it follows from (3.88) the 

noted equation has the form 

   0122  cf . 

The roots of this equation are such: 
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c

c
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



  (3.90) 

The first of these roots (3.90) 

 
BA

A


1  (3.91) 

satisfies both conditions (3.89) but the second of them  

 
BA

A


2   

does not satisfy requirements (3.89) and therefore should be rejected. Thereby the 

smallest value of the tangential acceleration, which is equal to zero, it accepts at 

the points 

 Axx  ;0 ,  

which are the points of intersection of the particle trajectory with the coordinate 

axes. As it is seen from the equality (3.91) and follows from the determination of 

variable   the largest value of the tangential acceleration it reaches at the points  

  
BA

A
Ax 

BA

A
Ax





 ; . (3.92) 

By substitution of the quantities (3.92) into (3.87) for the largest value of the 

tangential acceleration finally we have 

 .2 BAa 
 

6. The projection of the disc angular velocity having the fixed rotation axis 

changes in according to law 

  2/5,7,15, secradBsecradA BtAtz  . Determine the number 

N  of rotations made by the disc from the point of time 0t  to its total stopping.  

Solution. First of all we will determine the time passed from the beginning 

of the disc rotation until its total stopping. This time   is determined from the 

condition  

   0 BAz ,  (3.93) 

whence it follows .2sBA   Thereafter we will find the rotation angle of the 

disc during the time interval found above. Using the relation (3.93) as a result we 

have 

     .15
2

1 2

00

radBAdtBtAdttz  


 

The number N  of the rotations made by the disc from the point of time 0t  to its 

total stopping will be determined from the relation  2N  what finally give  

 .39,2
2

15



N  

 



Control task 

3.1. Analyse how many frames of reference can be linked to one body of 

reference: a) one; b) three; c) the number frames of reference coincides with the 

number of axes of symmetry of the body reference frame; d) infinite. 

3.2. Analyse how many frames of reference can be linked with a fixed point 

on a given body of reference: a) one; b) three; c) infinite; d) the number frames of 

reference coincides with the number of axes of symmetry of the body reference 

3.3. Analyse how many coordinate systems can be linked to one body of 

reference: a) one, b) infinite;  c) the number of coordinate systems coincides with 

the number of axes of symmetry of the body reference frame; d) three.  

3.4. Analyse how many coordinate systems can be linked with a fixed point 

on a given body of reference: a) one; b) three; c) infinite; d) the number of 

coordinates coincides with the number of axes of symmetry of the body of 

reference. 

3.5. Investigate the properties inherent in derivative of path by time: a) it is 

positive and it is continuous; b) it is positive and it is differentiable; c) it is 

negative and it is non-differentiable; d) it has an arbitrary sign and it is continuous. 

3.6. Analyse which of the following relations for the time derivatives of path 

takes place: a) 0
dt

dS
; b) 0

dt

dS
; c) c

dt

dS
 ; d). 0

dt

dS
.  

3.7.  Analyse whether the modulus of the particle displacement vector over 

certain time may be equal to the path passed by the particle over the same time: a) 

it is always equal; b) it is equal in the case of rectilinear motion of the particle 

without changing its direction; c) it is equal in the case of rectilinear motion of the 

particle with a changing of motion direction at the some time points; d) equality 

never hold. 

3.8. Investigate which of the following relationships for the increment of the 

particle radius - vector modulus d r  = dr and for the increment of its displacement 

vector modulus dr  it takes place:  а) dr = dr ; б) dr ≤ dr ; в) dr ≥ dr ; г) dr > 

dr . 

3.9. Analyse whether the equality dr = dr  ( r  – radius vector ) is fulfilled 

and, if so, point out which of these cases is the case: a) it is fulfilled for the 

rectilinear motion of a particle; b) it has not never fulfilled; c) it is fulfilled for the 

particle motion along an arbitrary closed trajectory , d) it is fulfilled for the motion 

of a particle along the circle. 

3.10. Investigate which of the following expressions determines the modulus 

of the particle average velocity, and which of them determines the modulus 

average value: a) 
d r

dt
 is modulus of the average velocity 

dr

dt
 is the average 

value of the velocity modulus; b) 
dr

dt
 is the average velocity modulus, 

dr

dt
 is 



the average value of the velocity modulus; c) 
d r

dt
 is the average velocity 

modulus, 
d r

dt
 is the velocity modulus average value; d) 

d r

dt
 is the modulus 

of the average velocity, 
dr

dt
 is the average value of the velocity modulus. . 

3.11. Particle, which performs rectilinear motion in a time changes direction 

of motion. To analyze which of the following quantities changes sign at specified 

time: a) the projection of the radius – vector; b) the projection of the displacement 

vector; c) projection of the velocity vector; d) there is no such value. 

3.12. Investigate the motion of the particle moving along the axis OX in 

according to law 2( )x t A Bt Ct   , where A = -19m, B = 20м/sec, C = -

1m/sec
2
, and find the projection of its acceleration xa  on the axis OX: а) xa  = 

2m/sec
2
; b) xa = - 2m/sec

2
; c) xa  = - 20m/sec

2
; d) xa  = 20 m/sec

2
. 

3.13. The motion  of the particle is given by the equation x = At + Bt²,  

A=0,25m/sec, B = - 0,5m/sec
2
. Investigate its motion for the first t = 0,25sec, 

and determine the path S, which the particle passes during this period: а) S= 

3,125·10
–2

m; b) S= 3,125·10 
– 3

m; c) S= 3,125·10 
– 4

m; d) S= 0,3125m. 

3.14. The motion of the particle takes place in according to law 
2 3x A Bt Ct   , where, B = -3m/sec

2
, C = 2m/sec

3
. Exploring its motion 

establish the average value of particle velocity modulus during the time interval 

from the point of time sect 5,01   till the point sect 5,11   that has passed since 

the motion beginning: а) v  = 2m/sec; b) v  = 2,5m/sec; c) v  = 1,5m/sec; d) 

v  = 1m/sec. 

3.15. Investigating the body free falling from a fixed height, compare its 

average velocity 
1

v  during the flight to a point that lies in its midway, with the 

average velocity 
2

v  during the falling time, and average velocity 
3

v  for the 

time which is equal to half of the falling time, and specify the correct ratios: а) 
1

v  

< 
2

v  < 
3

v ; b) 
1

v  < 
3

v  < 
2

v ; c) 
2

v  < 
1

v  < 
3

v ; d) 
3

v  < 
1

v  < 
2

v . 

3.16. Analyse the conditions under which the path of a particle moving 

along the axis Ox, defined by the formula 
2

0
2

xa t
S v t  , where 0v  is an initial 

velocity, xa  is an acceleration projection, t is the moving time: a) provided 

0xa , and provided 0xa  only till a stopping; b) only provided 0xa ; c) for 

any conditions; d) the correct answer is absent. 

3.17. As a result of the analysis point out which from the components of the 

acceleration vector are converted into zero in the following cases: a) both normal 

and tangential acceleration are converted into zero during uniform motion along a 



circle; b) normal acceleration is converted into zero during uniform motion along a 

circle but tangential acceleration is converted into zero while rectilinear uniform 

motion; c) tangential acceleration is converted into zero while rectilinear 

accelerated motion; d) tangential acceleration is converted into zero during 

uniform motion along a circle and normal acceleration is converted into zero while 

the particle executes the accelerated rectilinear motion.  

3.18. As a result of the analysis point out the correct relationship between 

the modules of the normal component of the acceleration vector na , of its 

tangential component a and of its total acceleration modulus a : а) an ≈  at, an > 

a; b) an < at, an≥ a; c) an = at ≈ a; d) an ≤ a, at ≤ a. 

3.19. As a result of the analysis point out the correct relationship between 

the velocity vector and the normal acceleration, tangential acceleration, and total 

acceleration of the particle that executes a various motion along an arbitrary 

curvlinear trajectory: а) v na  = 0, na ta  = 0; b) v ta  = 0, ta na  > 0; c) v a  = 0, 

ta na  = at an; d)   0va  ,  t na a  = at an.  

3.20. The particle moves along the circle so that its velocity modulus 

increases with the time. Analyse (see the figure 3.14) to which of the cases this 

motion corresponds if a


 is a total acceleration vector of the particle:  

 
 

3.21. The particle radius-vector depends on time according to the law 
2r At i Btj   where  A = 9m/sec

2
, B = 6m/sec. Investigate the motion of a particle 

and give the equation of particle trajectory in the explicit form: a) 2y x ; 

b) y x ; c) / 2y x ; d) xy 4=2 . 

3.22. Investigate the motion of a particle, for which the motion law has the 

form 2r Ati Bt j  , where 
2secmBsecmA 3,2  , and determine its 

velocity v


 at the moment of time sect 1 : a) 2v Ai Bj  , m/sec; b) 

v Ai Bj  , m/sec, c) v Ai Bj  , m/sec, d) 2v Bj , m/sec.  

3.23. Particle radius-vector changes in time according to the law 

     2r t A Bt Ct i Dt E j Fk      , where secmB 4 , 
2secmC 2 , 

secmD 6 . Investigating the particle motion, determine module of its 

tangential a  and normal na  acceleration in point of time sect 3  that passed 

from the beginning of the motion and the trajectory curvature radius R , in which 

the particle turns out in the specified point of time:  

Figure 3.14. To the control task 3.20 
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а) ;4,26,6,3,10 mRsecmasecma 2

n

2    

b) ;4,22,2,3,1,5 mRsecmasecma 2

n

2    

c) ;7,41,4,2,2,3 mRsecmasecma 2

n

2   

d) ;6,16,2,3,4,2 mRsecmasecma 2

n

2   

3.24. Investigate the correlation between the vectors of the linear and angular 

particle velocities, which rotates along a circle, and specify true from its: a) 

  0v  ; b)  v v   ; c) 0v  ; d) v v   .  

3.25. Analyse whether the projection of linear and angular velocity vectors  on 

the coordinate axes are changing when the reflection of the coordinate axes takes 

place: a) the projection of the linear velocity is changing its sign on the opposite 

one, and the angular velocity does not ; b) the projection of the angular velocity is 

changing its sign on the opposite and the projection of the linear one does not; c) 

the projections of both velocities do not changing their signs; d) the projections of 

both  velocities are changing their signs on the opposite. 

3.26. Points 1 and 2 (see figure 3.15) lie on the 

same radius of the rotating shaft. Analyse which of 

the noted quantities describing the movement 

are the same for these points: a) the angular velocity 

and linear acceleration; b) the angular and linear 

velocities; c) angular velocity and angular 

acceleration; d) linear velocity and angular 

acceleration.  

3.27. The rotation angle of the body rotating about an axis varies according to 

the law CBtAt  24 , where 
24 secradB secradA /1,/5,0  . 

Determine the total acceleration of the body point, which is located at a distance 

mR 4,0  from the axis of rotation: a) 
2

24,5 secma  ; b) 
2

47,6 secma  ; 

c) 
2

63,15 secma  ; d) 
2

29,13 secma  . 

3.28. Considering electron in the electrical field of atomic nucleus and 

assuming both as material points indicate the number of freedom degrees of 

electron in this system: a) one; b) two; c) three; d) four.  

O
1

2

Figure 3.15.  
To the control task 3.26 


