LOCAL PROPERTIES OF NONRENORMALIZABLE INTERACTIONS

M. Sh., Pevzner UDC 539.126

The possibility of constructing strictly localizable fields is considered, using gen-
eralized S-type spaces as spaces of basis functions. The restrictions imposed on the
asymptotic behavior of the amplitudes coincide with the well-known restrictions found
by Jaffe. Contrary to previous results, the spatial amplitudes and momenta are regu-
lar, and not singular functions, in the case considered. The possibility of formulating
spectral conditions is investigated.

1. Objects studied by the quantum theory of fields are various ordered products of field operators
averaged over the vacuum. The latter are linear, continuous functions, given in some space of basis func-
tions, This is a mathematical reflection of the fact that the observables are averages over some region of
space—time of some field operator A(x), i.e., of an operator of the form

A(g) = [ A(x)g(x)(dx). (1)

The Schwartz space (S) or the space of infinitely differentiable functions with 2 compact support (K)
are usually chosen for such a space. Studying nonnormalizable interactions, it was discovered that the
Whiteman and Green functions may grow exponentially in momenfum space [1-8] and, consequently, are not
linear continuous functionals on S. In this connection there arises the problem of the space of basis func-
tions to be used in the axiomatic quantum theory of fields in studying nonnormalizable interactions.

The first of these problems was stated by Meiman [9]. He determined the structure of the space of
basis functions, starting from Bogolyubov's microcausality principle [10]. Using such an approach it is
possibie to eliminate the assumption of moderate growth of generalized functions in the quantum theory
of fields, which is a purely mathematical assumption, having no relation to the physics of the problem,
and to extend the results, obtained by axiomatic and dispersion methods, to the case when generalized func-
tions are not moderately distributed (see also [11}).

A different way of solving the problem was suggested by Jaffe {12]. He pointed out that the vectors
A(@)¥, (¥, is the vector of the vacuum state) form a Hilbert space. Accounting for the spread, the locality
or microcausality principie should be formulated as

[A(@1), Alg2)]+=0, (2)

if the regions where ¢, (x) and ¢, (x) do not vanish are spatially similar. For (2) to make sense it is neces-
sary that the averages of the basis space functions be sufficiently finite functions. This space, however,
cannot coincide with K since, in particular, it does not allow the condition of spectrality to be formulated.
The Fourier transformations of the generalized functions studied by Jaffe assume an increase of the form

g (p)~exp{lpl/int*|pl} (3)
and in Meiman's approach the corresponding amplitudes assume the estimate
gp) <expefpl 1p[={(p* +p3)= >0 (4)

In what follows we adhere to Fainberg's terminology [13], calling a theory assuming growth of type
(3) strictly localizable, and a theory assuming growth of type () localizable, .

Dnepropetrovsk Mining Institute. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika,
No. 8, pp. 76-81, August, 1971. Original article submitted June 1, 1870."

© 1974 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A
copy of this article is available from the publisher for $15.00.

1080



If (2) is adopted as a locality criterion, the localizable and sirictly localizable theories necessarily
satisfy this criterion. The theories mentioned can, on the other hand, also be nonlocal.

Our problem involves the S-type spaces and their generalizations [14], more thoroughly studied
from the point of view of the possibility of using them as basis function spaces in the local quantum field
theory. A growth of type (3) is also assumed; however, conirary to Jaffe's results in the given case the
generalized functions in momentum space are regular, and not singular, functionals. The problem of
formulating the spectral condition can also be solved.

2. We consider a generalized S-type space {14] The space Sy, . 18 defined as the set of functions
¢ (x) satisfying the inequality

| x50 (x) | < CpAra; (5)

ay is an arbitrary series of numbers; and C, and A are constants, depending on ¢(x). The numbers a,
impose restrictions on the decrease of the basis functions at |x| — .

The space qu contains all functions ¢(x) satisfying the inequality

5a
[ %% 9@ (x) < CBb,, 5

Here bq is also an arbitrary series of numbers; and Cq and B are also dependent on ¢(x). The numbers by
restrict the growth of derivatives of the functions ¢(x) with an increase in their order. Imposing at the
same time restrictions on the attenuation of the basis functions at |x| — = and on the growth of derivatives
with an increase in their order, we obtain functions belonging to the space SS%. These functions satisfy
the inequality,

[ xfet@ (x) | << CA*BYa,b,. (5b)
The space SB% is the intersection of the spaces S, and qu’ ie.,
St =8, N S%. Ge)
Ay K

It is easily derived from (5a)-(5¢) that when the condition lim bq/ g4 =0 is satisfied, any function
g—>oe

b, .
Q(x) € Sa% can be continued to the band |y| < 1/Be of the complex z = x + iy plane; the band width is specific
to every function ¢(x).
Let us draw attention to the following. All infinitely differentiable functions, vanishing outside a
given segment of the real axis, which is characteristic of each function ¢ (x), appear in the K space. At
the same time the definition of this space does not impose any restrictions on the growth of the derivatives

of these functions with increasing order. It is easy to see, therefore, that by imposing these or other re-
strictions we obtain another space of basis functions, which is not a subspace of K.

The space of generalized functions can in this case be larger than K'and is, consequently, admis-
sible for our purposes. Such a space is, in particular, SPQ.

3. The space SB% is the union of topological spaces qu,lAB, ie,,
Ks

in the spaces SlioqAB the topology may be given by the denumerable set of norms
?

fo'?(x
foln = sup D i< )
(54 L)%,
m
_ . bg, B . . .
m =1,2,...). With these norms S1 A isa complete, denumerably normalized, ideal, nuclear space.

’
All preceding and following arguments remain valid when passing to a space of several variables,
using the representation

@ Xy, X, . .. X)) =TT 9, (x,). (8)
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4. Consider now the space s‘quB_ A linear continuous functional in this space is of the form [15]

(f,9) = [ D7 o (x) do, (x),
- (9)

OTtart+ang (X, Xo, ... Xn)

Da X) =
?(x) 0x99xs. .. Ox2n

The measures oq(x) are concentrated in the regions Ry, all points of which satisfy the inequality | x;| < A;.
The norm of functional (9) equals
(. )] = ( ) fds (). (10)
-

The continuity condition of functional (9) is equivalent to the finiteness of its norm, i.e.,

E(B—}— > bqfdcq(x)<oo, (11

g=0

which is a restriction on the order of the measures oq(x).
The nuclearity of the space under consideration allows to introduce a new system of norms
, f{Dio|(dx
Jol'=sup L2 1(E).
e
m
which is equivalent to (7) (with the distinction that the multidimensional case is considered in (12)). With
this system of norms we obtain instead of (10) and (11)

(12)

3

(f.9) =Z {Dag(x)f, (%) (dn), (13)

()] _z(B o Voysup, £y ()] < o0 (19
q(x) is a sequence of functions bounded and measurable in the region lX1| = A
5. We consider the nontriviality of S?QAB. To this end, we note that the inequality

1 1 if [ <A,
s l<e(Br ol [ljccll>A (15)

holds for all functions appearing in qu;\ . Therefore the problem of the nontriviality of Sio '\ is a clas~

sical problem of quasianalyticity [14]. Conditions should be imposed on the numbers by such that there
exist infinitely differentiable functions ¢(x) = 0, vanishing outside a finite segment and satisfying the in-

equality q
g0 (f<c(B+- ),

The answer to the question posed is provided by the Carlman—Ostrovski theorem. For the space quA

to be nontrivial a necessary and sufficient condition is

S‘lnI‘ x)d X < oo (16)

x?
i

where I' (x) = maquq/ bq is the Ostrovski function. (Anothér nontriviality criterion, and also a nontriviality
criterion of the qu space, is considered in [16].) '

Thus, if only b, — « sufficiently quickly for q — <, the quA space is nontrivial, contains finite
functions, and does not contain analytic functions. b

6. We consider now the problem of Fourier transforms of basis functions of the sz space and also
of linear continuous functionals on this space. The following theorem [17] holds. Let the conditions lim bi/ a
= e, g, < @ be satisfied. Then qu Sﬁq
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According to the theorem we write down

[P¥4@ (p) [ < C'ATBb,a,, (17
[4@ (p)| < C'AT-1(p|B)a, (72)

@ is the Fourier transform of the function ¢(x)). In what follows we confine the discussion to the case
ag =ag = 1 (this case corresponds exactly to our statement of the problem). It is easily seen that the
function

I'(s) = P(s) exp{s/int+:s} (18)

(P(s) is a polynomial of finite degree in s, £ > 0) satisfies condition (16). It can be verified that this condi-
tion prohibits a faster growth than (18). Hence follows the restriction on the growth of zp(q) P

[6(@ (p); < C'A7P-Y(p | B)exp{—p/BIn'+:p}. (19)
For the Fourier transforms of generalized functions we have
(&.9)= 2 [tryg, (0) ¥ (p) (dp). (20)
g=0

where gq(p) is a series of integral functions of degree of growth not exceeding 1.

We consider the series
W
G(p) = X(ip)g, (p) (21)

. q=()
and we show that it converges uniformly in the whole plane of the complex variable p, With this purpose
in mind we notice that by (14) the series 2 (B + i)q bglgq®)| converges for all p. Hence it follows

m

a=u \

rapidly that at q — « the quantity Cq(p) = bql 8q(p)| has the limit

Ci? (p) — const. (22)
It follows from the nontriviality of SP4 that the inequality
Niinrg, (m< X2, ) (23)
—=0 : g==0 q!

holds, and from (22) the uniform convergence of the series investigated follows immediately. Since {21)
is a uniformly convergent series of integral functions, its sum is also an integra] function.

It is thus seen that in the case considered the linear, continuous functionals are regular functionals
of the integral function G(p) type, becoming infinite along the real axis not faster than P(p) exp{p/alnt +Sp}.
It is thus seen that in passing to the 4-dimensional space the estimate (3) is valid.

7. We discuss the problem of formulating the speciral condition. In its usual formulation this con-
dition states that the average of field operators (0]A(x;). . . A(xp)|0) over the vacuum contains contribu-
tions from states of positive energy only. For this it is necessary that the Fourier transforms of the space
of basis functions ¢(x) be finite functions. It is easily seen that among the functions Y (p) belonging to S,IO
there are no finite functions. However, in this case any continuous function ¢ with bounded support G
C Rp can be approximated as closely as desired by an integral function i € Si),{’ significantly differing from

zero in the region GZP =G, +iRB, and, outside some open region Gz)) DMGW smaller than any given € > 0
[18]. This suffices completely for formulating the spectral conditions.’

8. It has thus been shown that the use of generalized S-type spaces in quantum field theory allows
the derivation of the same restrictions on the asymptotic behavior of amplitudes outside mass surfaces
as in the theory of strictly localizable fields [12]. The amplitudes mentioned define regular functionals.
The possibility of local interpretation of interactions the matrix elements of which satisfy the restriction
(3) outside the mass surface is thus confirmed,
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