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The poss ibi l i ty  of const ruct ing s t r i c t ly  local izable  f ields is considered,  using gen-  
e ra l ized  S-type spaces  as  spaces  of bas i s  functions. The r e s t r i c t i ons  imposed on the 
a sympto t i c  behavior  of the ampl i tudes  coincide with the well-known r e s t r i c t i o n s  found 
by Jaffe.  Con t ra ry  to previous  resu l t s ,  the spat ia l  ampl i tudes  and momenta  a r e  r egu -  
l a r ,  and not s ingular  functions,  in the case  considered.  The possibi l i ty  of formula t ing  
spec t r a l  conditions is invest igated.  

1. Objects  studied by the quantum theory  of f ields a r e  var ious  o rdered  products  of field ope ra to r s  
ave raged  over  the vacuum. The la t te r  a r e  l inear ,  continuous functions,  given in some  space  of bas i s  func-  
tions. This  is a ma thema t i ca l  re f lec t ion  of the fact  that the obse rvab les  a r e  ave rages  over  some region of 
s p a c e - t i m e  of some  field opera to r  A(x), i .e . ,  of an opera to r  of the f o r m  

A (cp) = J" A (x)cp(x)(dx) .  (1) 

The Schwartz space (S) or the space  of infinitely different iable  functions with a compact  support  (K) 
a r e  usual ly  chosen for  such a space.  Studying normormal izable  in terac t ions ,  it was d i s c o v e r e d  that the 
Whiteman and Green  functions m a y  grow exponential ly in momentum space  [1-8] and, consequently,  a r e  not 
l inear  continuous functionals on S. In this connection there  a r i s e s  the p rob lem of the space  of basis  func-  
tions to be used in the ax iomat ic  quantum theory  of f ields in studying nonnormal izable  in teract ions .  

The f i r s t  of these p rob lems  was stated by Meiman [9]. He de termined  the s t ruc tu re  of the space  of 
bas i s  functions,  s t a r t ing  f r o m  Bogolyubov 's  m ie roeausa l i t y  pr inciple  [10]. Using such an approach  it is  
possible  to e l iminate  the assumpt ion  of mode ra t e  growth of genera l ized  functions in the quantum theory  
of f ields,  which is  a purely  ma themat i ca l  assumpt ion ,  having no re la t ion  to the physics of the problem,  
and to extend the resu l t s ,  obtained by ax iomat ic  and d i spe r s ion  methods,  to the case  when genera l ized  func-  
tions a r e  not modera t e ly  dis t r ibuted (see a lso  [11]). 

A different  way of solving the p rob tem was suggested by Jaffe [12]. He pointed out that the vec to r s  
A(q~)~0 (r is the vec to r  of the vacuum state) f o r m  a Hi lber t  space.  Accounting for  the spread ,  the local i ty 
or  mic rocausa l i t y  pr inciple  should be formula ted  as 

[.4 ((Pl), A ((P2) ] -~ = 0, (2) 

if the regions where go l(x) and q02(x) do not vanish are spatially similar. For (2) to make sense it is neces- 
sary that the averages of the basis space functions be sufficiently finite functions. This space, however, 
cannot coincide with K since, in particular, it does not allow the condition of speetrality to be formulated. 
The Fourier transformations of the generalized functions studied by Jaffe assume an increase of the form 

g (p) - -  exp { [[p ll/In '+~ ]!p ]1 }; (3) 

and in Meiman ' s  approach  the cor responding  ampl i tudes  a s s u m e  the e s t ima te  

g (P) < exp ~llp]l, ljp[{ = (p~ +pg)l,=, e > 0. (4) 

In what follows we adhere  to F a i n b e r g ' s  t e rminology  [13], calling a theory assuming  growth of type 
(3) s t r i c t ly  local izable,  and a theory  assuming  growth of type (4) local izable.  
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If (2) is adopted as  a locali ty c r i t e r ion ,  the local izable  and s t r i c t ly  local izable  theor ies  n e c e s s a r i l y  
sa t i s fy  this c r i te r ion .  The theor ies  mentioned can, on the other hand, a l so  be nonlocal. 

Our p rob lem involves the S-type spaces  and the i r  genera l iza t ions  [14], m o r e  thoroughly studied 
f r o m  the point of view of the possibi l i ty  of using them as bas i s  function spaces  in the local  quantum field 
theory.  A growth of type (2) is a l so  a s sumed ;  however ,  con t r a ry  to J a f f e ' s  r e su l t s  in the given case  the 
genera l ized  functions in momen tum space  a r e  r egu la r ,  and not s ingular ,  functionals.  The problem of 
formula t ing  the spec t ra l  condition can a lso  be solved. 

2. We cons ider  a genera l ized  S- type space  [14] The space  SaK is defined as  the se t  of functions 
go (x) sa t is fying the inequali ty 

! x'~.(q ) (x) l < CqA'~a~; (5) 

ag is  an a r b i t r a r y  s e r i e s  of numbers ;  and Cq and A a r e  constants ,  depending on go(x). The nuw&ers ag 
impose  r e s t r i c t i o n s  on the dec r ea s e  of the bas is  functions at  ]xl ~ co. 

The space  sbq contains al l  functions go(x) sa t i s fying the inequality 
(5a) 

I X~ ~(q) (X) i ~ CBqbq. 
Here bq is also an arbitrary series of numbers; and Cq and B are also dependent on go(x). The numbers bq 
restrict the growth of derivatives of the functions go(x) with an increase in their order. Imposing at the 
same time restrictions on the attenuation of the basis functions at Ix I ~ ~o and on the growth of derivatives 
with an increase in their order, we obtain functions belonging to the space sbq. These functions satisfy 
the inequality, 

I X ~  (q) (x) [.~ CAKBqaubq. (5b) 

The space  sbq is the in te rsec t ion  of the spaces  Sag and sbq, i .e . ,  

s ~  = s~ N s% (5c) 

It is eas i ly  der ived f r o m  (5a)-(5c) that when the condition l i m b q / q q  = 0 is sa t is f ied,  any function 
q-+OO 

go(x) E Sa ~ can be continued to the band l Y] < 1 / B e  of the complex z = x + iy plane; the band width is specif ic  
2 

to eve ry  function go(x). 

Let  us draw attention to the following. All infinitely different iable  functions,  vanishing outside a 
given segment  of the r ea l  axis ,  which is ch a r ac t e r i s t i c  of each function go(x), appea r  in the K space.  At 
the s a m e  t ime  the definition of this space  does not impose  any r e s t r i c t i ons  on the growth of the der iva t ives  
of these  functions with inc reas ing  order .  It is e a sy  to see,  therefore ,  that by imposing  these or other  r e -  
s t r i c t ions  we obtain another  space  of bas is  functions,  which is not a subspace  of K. 

The space  of genera l ized  functions can in this case  be l a r g e r  than K'  and is,  consequently,  a d m i s -  
s ible  for  our purposes .  Such a space  is,  in par t i cu la r ,  sbq. 

space  is  the union of topological  spaces  i e ,  

In the spaces  sbq, B the topology may  be given by the denumerab ie  se t  of no rms  

(6) 

t~ 'q) (x) l I] r = supq( B ,-~ ~-l) qDq ' ] x I * A  (7)  

sbq, B (m = 1, 2, . . .). With these no rms  1,A is a complete ,  denumerab ly  normal ized ,  ideal,  nuclear  space.  

All preceding and following a rgumen t s  r e m a i n  valid when passing to a space  of s e v e r a l  va r i ab les ,  
using the r ep re sen ta t i on  

(x,,  x~ . . . .  x~) = I~ ~, (xi). (8) 
i ~ l  
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4. Consider  now the space  sbq , B A l inear  continuous functional in this space  is of the f o r m  [15] l,i~ " 
oo 

(f, ~p) = X S D  r ~ (x) d% (x), 
q ~ O  

Oq,+q,+...+q~ (x , ,  x . . . . .  x~) (9) 
Dq~(x) ---- 

oxq,Oxq~..'. 8x q~ 

The m e a s u r e s  aq(X) a r e  concentra ted in the regions  Rn, all  points of which sa t i s fy  the inequali ty Ix i[ _< A i. 
The norm of functional (9) equals 

1 q 
I(l '  : o-o (8 fdo , ( , .  ( 1 0 )  

The continuity condition of functional (9) is equivalent  to the f ini teness  of i ts  norm,  i .e. ,  

t q 

q------O 

which is a r e s t r i c t i o n  on the o rder  of the m e a s u r e s  aq(X). 

The nue lear i ty  of the space  under cons idera t ion  al lows to introduce a new s y s t e m  of no rms  

~ 0'~ = sup f I Dqer I (dx) (12) 
1 q ' 

which is  equivalent  to (7) (with the dist inct ion that the mul t id imensional  ease  is considered in (12)). With 
tMs s y s t e m  of n o r m s  we obtain instead of (10) and (11) 

(/, cp) = X  yDq ~, (x) f a ( x) (dx), (13) 
q = O  

l(f, <~)1 = i (  B +l__).b~supx ifq (x) ! < oo; (14) 
q___ o m 

fq(X) is a sequence of functions bounded and m e a s u r a b l e  in the region I xil -( Ai. 
# 

5. We cons ider  the nontr iv ia l i ty  of S bq' B t, A " To this end, we note that the inequality 

i C q ) ( x ) l ~ < C [ B + l C b o . I I  if / N I < A ,  (15) 
\ m ] tO, if ix i~>A 

sbq, B holds for  all functions appear ing  in S bq' B T h e r e f o r e  the p rob lem of the nontr ivia l i ty  of l, ~ is a c l a s -  
1,A " 

s ica l  p rob lem of quas ianaly t ic i ty  [14]. Conditions should be imposed on the numbers  bq, such that the re  
exis t  infinitely di f ferent iable  functions ~o(x) ~ 0, vanishing outside a finite segment  and sat isfying the in-  

equali ty iCq)(x)[.~C( B + 1 )q - -  bq. 
m 

sbq, B For  the space  l, The answer  to the quest ion posed is provided by the C a r l m a n - O s t r o v s k i  theorem.  
to be nontr ivia l  a n e c e s s a r y  and sufficient  condition is  

oo 

~lnr (x)dx < ~, (16) 
J x ~ 
! 

where  F (x) = m a x q x q / b q  is the Os t rovsk i  function. (Another nontr ivial i ty  c r i t e r ion ,  and a lso  a nontr ivial i ty  

c r i t e r ion  of the sa~q space,  is  considered in [16].) 
L 

s b q ,  ]3  Thus, if only bq ~ suff icient ly quickly for  q ~ ~, the i, A space  is nontr ivial ,  contains finite 
functions,  and does not contain analyt ic  functions.  

bq 
6. We cons ider  now the p rob lem of Four i e r  t r a n s f o r m s  of bas i s  functions of the S a space  and a lso  

of l inear  continuous functionals on this space  The following t heo rem [17] holds Let the ~onditions l i m b  1/q . . q 

= - ,  a K < " be sat isf ied.  ThenS b  7 =SgT. 
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According to the t heo rem we wri te  down 

!p~ 5(q) (p) [ ~ C'AqB~b~:aq, (17) 

l~ (q) (p)] ~ C'AqF -1 (p / B) aq (17a) 

(~ is the Four i e r  t r a n s f o r m  of the function ~(x)).  In what follows we confine the d iscuss ion  to the case  
aq = a~ = 1 (this case  co r re sponds  exact ly  to our s t a t ement  of the problem).  It is eas i ly  seen  that the 
function 

F (s) = P(s) exp {s / lnl+~s} (18) 

(P(s) is a polynomial  of finite degree  in s, e > 0) sa t i s f i es  condition (16). It can be ver i f ied  that this condi- 
t ion prohibi ts  a f a s t e r  growLh than (18). Hence follows the r e s t r i c t i o n  on the growth of ~ (q) (p) 

[ ~(q)(P) i ~ C'AqP-I (P / B) exp {-- p / B ln'+'p}. (19) 

For  the Four i e r  t r a n s f o r m s  of genera l ized  functions we have 
oo  

(g, ~)= ZS(i'p)qgq (p),~, (p)(dp), (20) 
q~----O 

where  gq(p) is a s e r i e s  of in tegra l  functions of degree  of growth not exceeding 1. 

We consider  the s e r i e s  
c o  

U (p) = ~( ,p)qgq  (p) (21) 
q = 0  

and we show that i t  converges  uni formly  in the whole plane of the complex va r i ab le  p. With this purpose 

in mind we notice that by (14)theseriesq~0(B= . +l)qbq,gq(p), converges for all p. HeneeitfoHows 

rapidly that at q ~ ~o the quantity Cq(p) = bql gq(p)[ has the limit 

C~ ;'~ (p) ~ const. (22) 

It follows f r o m  the nontr ivia l i ty  of sbq that the inequali ty 
oo  o ~  . q 

�9 <.~(ip)o Cq(p) (23) 
~(i2)qg~ (P) q~-o q l q~O 

holds, and from (22) the uniform convergence of the series investigated follows immediately. Since (21) 
is a uniformly convergent series of integral functions, its sum is also an integral function. 

It is thus seen that in the case considered the linear, continuous functionals are regular functionals 
of the integral function G(p) type, becoming infinite along the real axis not faster than P(p)exp{p/a in i + ep}. 
It is thus seen that in passing to the 4-dimensional space the estimate (3) is valid 

7. We discuss the problem of formulating the spectral condition. In its usual formulation this con- 
dition states that the average of field operators (01A (x1)... A (Xn)[ 0 } over the vacuum contains contribu- 
tions from states of positive energy only. For this it is necessary that the Fourier transforms of the space 
of basis functions q~(x) be finite functions. It is easily seen that among the functions r belonging to S~K 
there are no finite functions. However, in this case any continuous function ~ with bounded support G(fl 

R n can be approximated as closely as desired by an integral function r E SI bK' significantly differing from 

zero in the region Gr = Gq~ + iR n, and, outside some open region G~ ~-Gq~, smaller than any given g > 0 
[18]. This suffices completely for formulating the spectral conditions. 

8. It has thus been shown that the use of generalized S-type spaces in quantum field theory allows 
the derivation of the same restrictions on the asymptotic behavior of amplitudes outside mass surfaces 
as in the theory of strictly localizable fields [12]. The amplitudes mentioned define regular functionals. 
The possibility of local interpretation of interactions the matrix elements of which satisfy the restriction 
(3) outside the mass surface is thus confirmed. 

1, 
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