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ON THE CHARACTER OF CHIRAL SYMMETRY BREAKING AND 
FERMION VACUUM STRUCTURE IN QED3 

M. Sh. Pevzner and D. V. Holod UDC 530.145: 530.12 

Equation for the Bethe-Salpeter wave function of the Goldstone boson in QED3 is considered in the ladder 
approximation with the use of the Landau gauge for the photon propagator. With the help of standard 
simplifications, the existence of nonzero solutions for this equation is demonstrated, which testifies to the 
production of the above-described boson in the process of chiral symmetry breaking. At the same time, it is 
demonstrated that only one of the entire set of solutions describing the Goldstone boson corresponds to the 
stable ground state; this solution has the greatest fermion mass. In the remaining cases, the compound boson 
state with zero mass is excited, and all other states having smaller energies appear tachyon states and hence 
are unstable. The fermion condensate is calculated; it is demonstrated that in the examined case, it is finite. 
Based on the foregoing, conclusions are drawn about spontaneous rather than dynamic character of chiral 
symmetry breaking in QED3, complex structure of fermion vacuum for the examined model, and at the same 
time, simple structure of the massive phase vacuum. 

Keywords: chiral symmetry, Bethe–Salpeter wave function, ladder approximation, Goldstone boson, tachyon, 
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1. The problem of chiral symmetry breaking in QED3 was studied in [1]. The main method of investigations 

there was a solution of the Schwinger–Dyson equation for the fermion propagator in the ladder approximation. In [2, 3], 
nonzero solutions were obtained for the mass function and hence for the dynamic fermion mass, and the following 
alternative conclusions were drawn: 

(i) the fermion vacuum in QED3 can have a complex structure; moreover, each mass has its own vacuum and 
propagator, i.e., 

 ( ) ( )0, ( ) ( ) ,0nG x x n T x x n′ ′− = ψ ψ ; (1) 

(ii) the vacuum structure can be simple, and different vacuum structures correspond to different Lagrangians. 
The first case describes spontaneous chiral symmetry breaking, and the second case characterizes dynamic 

symmetry breaking. In this work, the problem of choice between the indicated alternatives in QED3 is solved based on 
the ladder approximation for the Bethe–Salpeter wave function of the Goldstone boson and the Landau gauge for the 
photon propagator. 

Statements (i) and (ii) can be illustrated as follows. The term that breaks the chiral invariance in the Lagrangian 
has the form 

 0 ( ) ( ) ( )mL m x x= Λ ψ ψ , (2) 
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where Λ is the cutoff parameter and ( )0m Λ  is the bare fermion mass (it is assumed that ( )0lim 0m Λ =
Λ→∞

). From 

here, however, it does not follow that 0mL →  when Λ → ∞ , since the operator ( ) ( )x xψ ψ  can be poorly defined. 
Therefore, the situation is possible when mL  does not vanish for ( )0 0m Λ → , that is, the chiral symmetry can be 
broken even when 0 0m → . To obtain an exact answer to the question whether or not this is the case for the examined 
model, we can, on the one hand, calculate directly the matrix elements of the operator ( ) ( )x xψ ψ  and to estimate their 
behavior for Λ → ∞ , and on the other hand, we can test the model for the presence of particles with zero mass. 

In [4] the choice between cases (i) and (ii) was made by consideration of the effective potential for the 
examined model. In the present work, the solution of this problem is supplemented by calculation of the Bethe–Salpeter 

boson wave function ( , )q pχ  (here 1 2q p pμ μ μ= − , 1 2

2
p p

p μ μ
μ

+
= , and 1p  and 2p  are the momenta of the fermion 

and antifermion whose bound state forms this boson). In addition, we consider here the behavior of the compound 
operator ( ) ( )x xψ ψ , in particular, calculate the matrix element 0( ) ( )x xψ ψ . 

2. Considering that the number of axial vector vertices is doubled in QED3 compared to QED4 ( 5 2 1( , )p pμΓ
 

and 3 2 1( , )p pμΓ ) and assuming that axial currents are retained in accordance with [5, 6], for the photon propagator in 

the ladder approximation with the Landau gauge we obtain the following relationship between the function 
( 0, ) ( )q p pχ = = χ  and the mass function ( )M p : 

 2 2
1 ( )( ) M pp
f p m

χ =
+

, (3) 

where f  is a constant related to the boson decay constant, and m  is taken to mean the dynamic fermion mass. The 
equation for the function ( )pχ  has the form 

 ( )
2 3

2 2 0
3 2

2
( ) ( )

(2 )
e d kp m p k

l
+ χ = χ

π
∫ . (4) 

Here 2
0e  is the dimensional coupling constant in QED3, l p k= − , and p and k are the three-dimensional vectors 

considered in the Euclidean region. Below we consider approximate and exact variants of solution of Eq. (4) with their 
subsequent analysis. 

a) Approximate variant. We now express the kernel 21 l  in the form 

 
1 1

1 1
1 12 2 2

1 1

1 ( ) ( )(cos ) (cos )
n n

n n
n n

p k k k p pC C
p kl p k

− −∞ ∞
− −

= =

θ − θ −⎛ ⎞ ⎛ ⎞= ϑ + ϑ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
∑ ∑ , 

where θ  is the Heaviside function, p and k are the moduli of the corresponding vectors, ϑ  is the angle between them, 

and
 

1
1

sin(cos )
sinn

nC −
ϑϑ =

ϑ  
are the Gegenbauer polynomials. 

Substituting the above expansion into Eq. (4) and considering the first non-vanishing terms, we obtain 

 ( )
2 2

2 2 20 0
2 2 2

0
( ) ( ) ( )

p

p

e e
p m p k k dk k dk

p

∞
+ χ = χ + χ

π π
∫ ∫ . (5) 

In the right side of Eq. (5), we have neglected the mass term in comparison with 2p , considered the lower 
limit of integration m , and proceeded to the differential equation 
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23 2

2 0
2 2

2
7 8 0

ep d dp p
dpdp

⎛ ⎞χ χ+ + + χ =⎜ ⎟⎜ ⎟π⎝ ⎠
 (6) 

with boundary conditions 

 ( )( )2 ( ) 0
p m

p p
=

′χ = ,  
( )( )4 ( )

lim 0
p

p p

p→∞

′χ
= . (7) 

Equation (6) with conditions (7) has a nonzero solution. Indeed, the general solution of Eq. (6) has the form 

 ( )( )3
1 2 2 2( ) ( )p pp p c J c N−χ = α + α , (8) 

where J2 and N2 are the Bessel and Neumann functions of the corresponding order, and ( )1/22 2
08p e pα = π . 

The second equation of conditions (7) yields 2 0c = , and from the first condition, we obtain 

 ( )( )2 1
12( ) ( ) 0

2
m

mp m

c
p p J

p=

α′χ = − α =  (9) 

( )1/22 2
08 ,m e m⎛ ⎞α = π⎜ ⎟

⎝ ⎠
 from which it follows that nonzero value for 1c  is possible only under condition that 

 1( ) 0mJ α = , (10) 

which coincides with relation (12) from [1] determining the dynamic fermion mass. We have 

 
2
0

2 2
1,

8
n

n

e
m m

j
= =

π
, (11) 

where 1,m njα =  are roots of the function ( )1J x  of the order n (except zero). It is well known that this function has 

infinite number of simple roots, and all of them are real and positive [7]. 
To calculate the constant 1c , we take advantage of equality (3); as a result, we obtain 

 
2

1
2 ( )m

mc
f J

=
⋅ α

. 

Thus, for the Bethe–Salpeter wave function of the Goldstone boson, we have 

 
2

2
3

2

( )
( )

( )
p

m

m J
p

f p J

⋅ α
χ =

⋅ α
. (12) 

It can be easily seen that the expression obtained follows from relations (3) of the present work and (14) of 
work [1]. We note also that 2 ( ) 0mJ α ≠  in equality (12), since the roots of functions 1( )mJ α  and 2 ( )mJ α  do not 
coincide [7]. 
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b) Exact variant. As indicated in [1], Eq. (4) in the Euclidean region was considered for the first time by 
V. A. Fok (see [8]). The solutions of this equation possessing the s-symmetry have the form 

 ( ) 22 2 sin( )
sin

np C p m
− γχ = +

γ
, (13) 

where 

 
2 2

2 2arccos m p
m p

−γ =
+

. 

The constant C here cannot be determined from Eq. (4) due to its linearity; its determination calls for additional 
conditions. According to [1], for this constant we have 

 
( )

32 1
sin 2

mC
f n

=
π

, (14) 

where only odd values should be taken for n. We note also that solutions (13) appear possible only for the dynamic 
mass 

 
2
0

4
e

m
n

=
π

. (15) 

The presence of the Goldstone boson is in agreement with the retention of the axial currents (the divergence of 
the matrix elements of these currents is equal to zero). In this case, the formal chiral symmetry of the Lagrangian 
appears the actual symmetry of the model spontaneously broken by solutions (14), (17), and (19) of [1]. Thus, the 
conclusion about the complex structure of the fermion vacuum in QED3

 (statement (i)) can be drawn here based on the 
presence of the Goldstone boson. 

3. We now consider the determination of the operator ( ) ( )x xψ ψ  for the model, in particular, find the chiral 
condensate 

 3
0, 0 3 2 2

1 1 1 ( )Tr ( ) Tr
4 4 (2 ) ( )

nn x
k iM kG x d k

k M k=
+ψψ = = −

π +
∫  (16) 

that plays the role of the order parameter. It can be seen that in the examined approximation, the chiral condensate is 
related to the Bethe–Salpeter wave function by the expression 

 3
0, 3 ( )

(2 )n
if k d kψψ = − χ
π

∫ . (17) 

Thus, the condensate represents the Bethe–Salpeter wave function for the Goldstone boson at the origin of 
coordinates multiplied by the probability of its decay. It can be calculated using both results of approximate calculations 
(12) and exact calculations (13). 

a) Approximate calculations. Proceeding in equality (17) to the Euclidean variables, introducing infrared 
cutting nm , neglecting in the denominator by the function ( )2M k  in comparison with 2k , and integrating over the 
angular variable, we obtain 
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( )1/22 2 12 1

20, 2 2
02 2

( )
( ) ( )

n

n n
mn

mm m

J km m
dk x J x dx

kJ J

−∞
−

α
ψψ = = α

π α π α
∫ ∫ , (18) 

where 
1/22

0
2

8e⎛ ⎞
α = ⎜ ⎟⎜ ⎟π⎝ ⎠

. Calculation of the last integral yields 

 
1

1 1
2 1

0

1( ) ( )
2m m mx J x dx J− −α = − α α∫ . 

Taking advantage of Eq. (10), we have 

 
2

0, 2
22 ( )
n

n
m

m
J

ψψ =
π α

. (19) 

Using Eq. (11), we obtain for 0,1ψψ : 

 4 4
00,1 5.12 10 e−ψψ = ⋅ . (20) 

The reasons why we consider the case n = 1 here and in section 3b are discussed in section 4. 
The chiral condensate and the mass function are related by the formula 

 
2

1
20,( ) ( )

2n pnM p p J−π= ψψ α , (21) 

derived in [9] using the procedure of expansion of the operator product. In this work, Eq. (21) was derived as a result of 
direct solution of the boundary problem for Eq. (6) with conditions (7). 

b) Exact calculations. To determine the chiral condensate using the exact Bethe–Salpeter wave function, we 
take advantage of representations (12), (13), and (16) for n = 1 which, as demonstrated below (section 4) and follows 
from [1], corresponds to the actual situation. Calculations in the Euclidean region yield 

 
2

4 41
00,1 7.74 10

4
m

e−ψψ = = ⋅
π

. (22) 

Considering that Eq. (22) is exact, we can see that the quantitative difference between Eqs. (20) and (22) is 
34%. Thus, both expressions yield values of the same orders of magnitude and, considering that the purely technical 
approximations are rough, the agreement of the results obtained from Eqs. (20) and (22) can be considered satisfactory. 

Finite values of expressions (18) and (20) for the chiral condensate allow us to think that other matrix elements 
of the compound operator ( ) ( )x xψ ψ  for our model will not require additional determination, and hence term (2) will 
disappear for any arbitrary law according to which 0( )m Λ  tends to zero. Anyway, the Lagrangian will be chiral 
invariant for 0 0m = . In other words, the behavior of the chiral condensate for Λ → ∞  in this model corresponds to 
case (i). 

4. Thus, in the present work it has been demonstrated that the dynamic mass of fermion in QED3 in the ladder 
approximation arises due to spontaneous rather than dynamic chiral symmetry breaking [2, 3] (case (i)). We now 
analyze in more detail the physical meaning of the results obtained. First of all, we indicate the physically special case 
of n = 1. It possesses the greatest fermion mass and, hence, the least time of massive phase formation. To solve Eq. (4), 
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the fermion mass corresponding to the channel with the given n value must be used. We note that in [1] it was 
demonstrated that solutions of the Schwinger–Dyson equation for the mass function for 1n >  are artifacts of 
linearization of the given equation. 

Other reasons can be given if we consider the analogy between the examined quantum field problem and the 
one-particle problem of relativistic quantum mechanics on particle motion in the field of a central force [6]. Indeed, 
analyzing Eq. (12) for the Bethe–Salpeter wave function of the Goldstone boson, we see that for n = 1, it has no zeros in 
the region p m≥  and hence, the boson state with 2

0 0M =  ( 0M  is the boson mass) can be considered here as the 
ground state. For 1n > , the examined functions start to oscillate, and with increasing n, their frequency also increases. 
This circumstance allows us to consider the boson state with 2

0 0 M =  as excited, and all other states must have 
2
0 0, M <  that is, be tachyon states. As pointed out in [6], in the one-loop approximation of quantum field theory, 

energy ε with Im 0ε >  corresponds to the vacuum state with 2
0 0M < , that is, the vacuum state is unstable in this case. 

Unlike QED4, in QED3 there is no critical parameter at which the bound state corresponding to the Goldstone boson is 
formed from the fermion-antifermion pair. In other words, the above-mentioned boson in QED3 is produced for any 
arbitrary value of the coupling constant. 

Thus, only the solution with n = 1 yields the stable vacuum for the Goldstone bosons; other solutions should be 
considered as the artifact of the employed approximation. The same conclusion can be drawn from an analysis of 
Eq. (13), except for the circumstance that here it refers to the entire interval of momenta rather than to the region with 
p m≥ , as in the previous case.  

Let us now compare the results of this work with those we obtained by the effective potential method in [4], 
where we concluded that the structure of vacuum of the massive phase is complex in QED3. Results of this work and [1] 
demonstrate that this conclusion, leaning upon the correct factological base, is not true. At the same time, if we present 
graphically the results obtained in [4] (see Fig. 1, where the serial channel number is considered as a continuous 
variable), we can see that nonzero values of the effective potential in QED3 in the employed approximation for 1n >  
should most likely be interpreted as noise around the zero value. In other words, results obtained in [4] can also be 
considered as demonstrating the simplicity of vacuum of the massive phase. 

Thus, in the present work we have demonstrated that the dynamic fermion mass in QED3 in the ladder 
approximation results from the spontaneous rather than dynamic chiral symmetry breaking [2, 3], that is, case (i) is 
realized for this model. The fermion vacuum, as expected in this situation, has complex character and incorporates the 
massless and massive phases. On the other hand, the vacuum of the massive phase is simple and corresponds to the 
greatest mass of the obtained spectrum of masses: solutions of the Bethe–Salpeter equation for the wave function of the 
Goldstone boson that refer to other masses correspond to the excited states and yield an unstable ground condition for 
this boson. 

 

 

Fig. 1. Dependence of the effective potential on the serial channel number. 
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