Laboratory Work № 3.30

Measuring resistance using the bridge method
The aim: to explore laws of DC and to measure resistance in a bridge method;
Accessory: model of the gear, source of power supply;
Description of the device and piece of theory

Scheme of the bridge is a rectangle of resistance. At one diagonal there is a source of supply, at another-galvanometer (current detector). The latter diagonal is called as a bridge. If we know three resistances $R, R(1), R(2)$, it's easy to define the forth $\mathrm{R}(\mathrm{x})$.

If key P and button K are pressed, there is a current in BD . Its direction depends on which point has greater potential. If potentials 're equal there is no current in the diagonal:

$\varphi(B)-\varphi(Д)=0 ; \quad$ (1);

In this case current I is divided in two currents $I(1-А Д В)$ and $I(2-А Б В)$.
According to the DC laws, it is obtained:
АД: $\boldsymbol{U}={ }^{I_{1} R_{1}}$; (2);
$\boldsymbol{A} \boldsymbol{\boldsymbol { b }} \boldsymbol{:} \boldsymbol{U}={ }^{I_{2} R_{x}}$;

It follows, that:

$$
I_{1} R_{1}=I_{2} R_{x}
$$

(4);

For ДВ and БВ:

$$
\begin{equation*}
I_{1} R_{2}=I_{2} R \tag{5}
\end{equation*}
$$

$$
\frac{R_{1}}{R_{2}}=\frac{R_{X}}{R} \quad R_{X}=\frac{R_{1}}{R_{2}} R
$$

Usually, AD and DC are changed by rheochord (slide-wire)- a kind of homogeneous wire set along AC.

In this case $R(1)$ is for АД and $R(2)$ - for ДВ. So, we have:

$$
R_{1}=\rho \frac{\ell_{1}}{S} ;(7) ; \quad R_{2}=\rho \frac{\ell_{2}}{S}
$$

$$
\frac{R_{1}}{R_{2}}=\frac{\ell_{1}}{\ell_{2}}
$$

(9);

Using formulas №9 and №6 we obtain:

$$
R_{x}=\frac{\ell_{1}}{\ell_{2}} R
$$

\%	O	$\begin{gathered} \text { Результати } \\ \text { вимірів } \end{gathered}$			$\begin{gathered} R_{x_{i}} \\ \text { Ом } \end{gathered}$	$\begin{gathered} \left\langle R_{x}\right\rangle \\ \text { Oм } \end{gathered}$	$\begin{gathered} \Delta R_{x_{i}} \\ \text { Ом } \end{gathered}$	$\begin{gathered} \Delta R_{x_{i}}^{2}, \\ \text { Ом } \end{gathered}$	$\begin{gathered} S\left\langle R_{x}\right\rangle \\ \text { Oм } \end{gathered}$	α	${ }^{t}{ }_{\alpha, n}$	$\begin{gathered} \Delta R_{x} \\ \text { Ом } \end{gathered}$	E,$\%$
		ℓ_{1}	ℓ_{2}	R									
1 2 3	$R_{x_{1}}$												
1 2 3	$R_{x_{2}}$												
1 2 3	Послідовне з'єд- нання												
1 2 3	Паралельне з'єднання												

After filling up the table, measured values should be compared with theoretical ones.
$\boldsymbol{R}($ one by one $)=$
$=\left\langle R_{1}\right\rangle+\left\langle R_{2}\right\rangle$;
$\boldsymbol{R}($ parallel $)=\frac{\left\langle R_{1}\right\rangle\left\langle R_{2}\right\rangle}{\left\langle R_{1}\right\rangle+\left\langle R_{2}\right\rangle}$;

